Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:04:24.880Z Has data issue: false hasContentIssue false

Origin of the clay mineral assemblages in the Germanic facies of the English Trias: application of the spore colour index method

Published online by Cambridge University Press:  09 July 2018

C. V. Jeans*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
M. J. Fisher
Affiliation:
Nevis Associates Limited, 34 West Argyle Street, Helensburgh, Dumbartonshire G84 8DD, UK
R. J. Merriman
Affiliation:
British Geological Survey, Keyworth, Nottinghamshire NG12 5GG, UK

Abstract

The origin of the regional and stratigraphical variation in the Triassic authigenic clay assemblages of England is discussed in relation to new estimates of the palaeotemperatures experienced by their host sediments and a preliminary study by transmission electron microscopy of their microtextural features. Spore colour index measurements, based on the spore type Deltoidospora s.l. occurring in the sediments (Penarth Group) at the very top of the Triassic sequence, give estimated palaeotemperatures ranging from 60–74°C (south Devon) to 89–97°C (northeast Yorkshire). Calculated palaeotemperatures, based on a gradient of 25°C/km, for the main zone of authigenic clay minerals range from 63–77°C to 89–97°C for the top to 71–85°C to 94–104°C for the base. Irregular mixed-layer smectite-chlorite, corrensite and Mg-rich chlorite are associated with calculated palaeotemperatures of 66–86°C, 66–104°C and 75–104°C respectively. The suggestion that elsewhere in the UK corrensite and Mg-rich chlorite were formed at temperatures in excess of 100°C finds no support. Geothermal gradients would have to have been of the order of at least 100–300°C/km to obtain these temperatures within the Triassic sediments; such values are associated typically with high-level magmatic intrusions or geothermal systems of which there is no geological evidence. The balance of evidence suggests that the Triassic authigenic clay assemblages formed by neoformation during the early stages of sediment diagenesis under the influence of variation in the alkalinity of the depositional environments.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barclay, W.J., Ambrose, K., Chadwick, R.A. & Pharaoh, T.C. (1997) Geology of the country around Worcester. Memoirs of the British Geological Survey. Sheet Memoir 199 (England & Wales) 156 pp.Google Scholar
Bloodworm, A.J. & Prior, A.V. (1993) Clay mineral stratigraphy of the Mercia Mudstone Group in the Nottingham area. British Geological Survey Technical Report WG/93/29.Google Scholar
Bodine, M.W. & Madsen, B.M. (1987) Mixed-layer chlorite/smectite from a Pennsylvanian evaporate cycle, Grand County, Utah. Proceedings of the International Clay Conference, Denver 1985. The Clay Minerals Society, Denver, Colorado, pp. 85-93.Google Scholar
British Geological Survey (1996) Nottingham. England and Wales Sheet 126.Google Scholar
British Geological Survey (2001) Loughborough. England and Wales Sheet 141.Google Scholar
Calvo, J.P., Blanc Valleron, M.M., Rodriguez-Arandia, J.P., Rouchy, J.M. & Sanz, M.E. (1999) Authigenic clay minerals in continental evaporate environments. Pp. 129–151 in: Palaeoweathering, Palaeosurfaces and Related Continental Deposits (Thiry, M. & Simon Coincon, R., editors). Special Publications, 27, International Association of Sedimentologists, .Google Scholar
Collins, A. (1990) The 1-10 spore colour index (SCI) scale: a universally applicable colour maturation scale, based on graded, picked palynomorphs. Mededelingen vant Rijks Geologischen Dienst, 45, 3947.Google Scholar
Cornford, C. (1998) Source rocks and hydrocarbons of the North Sea. Pp. 376-462 in: Introduction to the Petroleum Geology of the North Sea, 4th edition (Glennie, K.W., editor). Blackwell Scientific Publications, Oxford, UK.Google Scholar
Echle, W. (1961) Mineralogische Untersuchungen an Sedimenten des Steinmergelkeupers und der Roten Wand aus der Umgebung von Göttingen. Beiträge zur Mineralogie und Petrographie, 8, 28.Google Scholar
Hillier, S. (1993) Origin, diagenesis and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and Clay Minerals, 41, 107115.CrossRefGoogle Scholar
Honeybourne, D.B. (1951) The clay minerals of the Keuper Marl. Clay Minerals Bulletin, 1, 150.Google Scholar
Horton, A., Poole, E.G., Williams, B.J., Illing, V.C. & Hodson, G.D. (1987) Geology of the country around Chipping Norton. Memoirs of the British Geological Survey. Sheet Memoir 218 (England & Wales) 169 pp.Google Scholar
Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal and diagenetic alterations, Hokuroku Kuroko mineralization area, northeast Japan. Pp. 158–164 in: Proceedings of the International Clay Conference, Denver 1985 (Shultz, L.G., van Olphen, H. & Mumpton, F.A., editors). The Clay Minerals Society, Bloomington, Indiana, 456 pp.Google Scholar
Inoue, A. & Utaba, M. (1991) Smectite-to-chlorite transformation in thermal metamorphism of volcaniclastic rocks at Kamikika area, northern Honshu, Japan. American Mineralogist, 76, 628–640.Google Scholar
Jackson, D.I. & Mulholland, P. (1993) Tectonic and stratigraphic aspects of the East Irish Sea Basin and adjacent areas: contrasts in their post-Carboniferous structural styles. Pp. 791-808 in: Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference (Parker, R.J., editor). Geological Society, London.Google Scholar
Jeans, C.V. (1978) The origin of the Triassic clay assemblages of Europe with special reference to the Keuper Marl and Rhaetic of parts of England. Philosophical Transactions of the Royal Society, Series A, 289, 549-639.Google Scholar
Jeans, C.V. (1984) Patterns of mineral diagenesis: an introduction. Clay Minerals, 19, 263270.CrossRefGoogle Scholar
Jeans, C.V. (1995) Clay mineral stratigraphy in Palaeozoic and Mesozoic red bed facies onshore and offshore UK. Pp. 31-55 in. Non-biostratigraphical Methods of Dating and Correlation (Dunay, R.E. & Hailwood, E.A., editors). Special Publication, 89. Geological Society of London.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of Permo-Triassic clay mica assemblage. Clay Minerals, 29, 575589.CrossRefGoogle Scholar
Jeans, C.V., Fallick, A.E., Fisher, M.J., Merriman, R.J., Corfield, R.M. & Manighetti, B. (1997) Clay- and zeolite-bearing Triassic sediments at Kaka Point, New Zealand: evidence of microbially influenced mineral formation from earliest diagenesis into the lowest grades of metamorphism. Clay Minerals, 32, 373423.CrossRefGoogle Scholar
Jeans, C.V., Fisher, M.J., Raine, J.L., Merriman, R.J., Campbell, H.J., Fallick, A.E., Carr, A.D. & Kemp, S.J. (2003) Triassic sediments of the Kaka Point Structural Belt, South Island, New Zealand, and their relationship to the Murihiku Terrane. Journal of the Royal Society of New Zealand, 33, 57-84.CrossRefGoogle Scholar
Jiang, W.-T., Peacor, D.R., Merriman, R.J. & Roberts, B. (1990) Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite. Clays and Clay Minerals, 38, 449-468.CrossRefGoogle Scholar
Kemp, S.J. (1999) The clay mineralogy and maturity of the Mercia Mudstone Group from Asfordby borehole, Leicestershire. British Geological Survey Technical Report WG/99/7, 22 pp.Google Scholar
Kim, J.-W., Peacor, D.R., Tessier, D. & Elsass, F. (1995) A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations. Clays and Clay Minerals, 43, 51–57.CrossRefGoogle Scholar
Kristmannsdottir, H. (1979) Alteration of basaltic rocks by hydrothermal activity at 100-300°C. Pp. 359-367 in: International Clay Conference 1978 (Mortland, M.M. & Farmer, V.C., editors). Developments in Sedimentology 27. Elsevier, Amsterdam.Google Scholar
Lippmann, F. (1954) Uber einen Keuperton von Zaiserweiher bei Maulbronn. Heidelberger Beitrage zur Mineralogie und Petrographie, 4, 130.Google Scholar
Lippmann, F. (1956) Clay minerals from the Köt Member of the Triassic near Göttingen. Journal of Sedimentary Petrology, 26, 125139.CrossRefGoogle Scholar
Lippmann, F. (1959) Corrensit. Pp. 688-691 in: Handbuch der Mineralogie (C. Hintze & Chudoba, K.F., editors), de Gruyter, Berlin.Google Scholar
Lippmann, F. & Berthold, C. (1992) De Mineralbestand des Unteren Muschelkalkes von Geislingen bei Schwabisch Hall (Deutschland). Neues Jahrbuch fur Mineralogie Abhandlungen, 164, 183–200.Google Scholar
Lippmann, F. & Pankau, H.-G. (1988) Der Mineralbestand des Mittleren Muschelkalkes von Nagold, Wurttemberg. Neues Jahrbuch fur Mineralogie Abhandlungen, 158, 257-292.Google Scholar
Lippmann, F. & Savascin, M.Y. (1969) Mineralogische Untersuchungen an Lösungsrückständen eines wiirttembergischen Keupergipsvorkommens. Tschermaks Mineralogische und Petrographische Mitteilungen, 13, 165.Google Scholar
Lippmann, F. & Schlenker, B. (1970) Mineralogische Untersuchungen am oberen Muschelkalk von Haigerloch (Hohenzollernj. Neues Jahrbuch für Mineralogie Abhandlungen, 113, 68.Google Scholar
Lippmann, F. & Steiner, K. (1983) Der Mineralbestand des Gipskeuper van Pfäffingen (Tübingen) and Schenningen, Württemberg. Oberrheinische Geologische Abhandlungen, 32, 15–43.Google Scholar
Lippman, F. & Zimmermann, M. (1983) Die Petrographie des Knollenmergel, Mittlerer Keuper, Trias. Geologische Rundschau 72, 1105-1134.Google Scholar
Lucas, J. (1962) La transformation des minéraux argileux dans la sédimentation: Études sur les argiles du Trias. Mémoires du Service de la Carte geologique d'Alsace et de Lorraine, 23, 202 pp.Google Scholar
Lucas, J. & Ataman, G. (1968) Mineralogical and geochemical study of clay mineral transformations in the sedimentary Triassic Jura Basin (France). Clays and Clay Minerals, 16, 365.Google Scholar
Martin-Vivaldi, J.L. & MacEwan, D.M.C. (1957) Triassic chlorites from the Jura and the Catalan coastal range. Clay Minerals Bulletin, 3, 177183.CrossRefGoogle Scholar
Martin-Vivaldi, J.L. & MacEwan, D.M.C. (1960) Corrensite and swelling chlorites. Clay Minerals Bulletin, 4, 173181.CrossRefGoogle Scholar
Merriman, R.J. (2002) Contrasting clay mineral assemblages in British Lower Palaeozoic slate belts: the influence of geotectonic setting. Clay Minerals, 37, 207219.CrossRefGoogle Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites; mineralogy, microfabrics and measuring reaction progress. Pp. 10–60 in: Low-Grade Metamorphism (M. Frey and D. Robinson, editors). Blackwell Sciences Ltd., Oxford, UK.Google Scholar
Old, R.A., Sumbler, M.G. & Ambrose, K. (1987) Geology of the country around Warwick. Memoirs of the British Geological Survey. Sheet Memoir 184 (England & Wales) 93 pp.Google Scholar
Old, R.A., Hamblin, R.J.O., Ambrose, K. & Warrington, G. (1991) Geology of the country around Redditch. Memoirs of the British Geological Survey. Sheet Memoir 183 (England & Wales) 83 pp.Google Scholar
Poole, E.G. (1977) Stratigraphy of the Steeple Aston Borehole, Oxfordshire. Bulletin of the Geological Survey of Great Britain, 57, 4043.Google Scholar
Poole, E.G. (1978) Stratigraphy of the Withycombe Farm borehole near Banbury, Oxfordshire. Bulletin of the Geological Survey of Great Britain, 68, 2228.Google Scholar
Powell, J.H., Cooper, A.H. & Benfield, A.C. (1992) Geology of the country around Thirsk. Memoirs of the British Geological Survey. Sheet Memoir 52 (England & Wales) 128 pp.Google Scholar
Raymond, L.R. (1955) The Rhaetic Beds and Tea Green Marl of North Yorkshire. Proceedings of the Yorkshire Geological Society, 30, 5.Google Scholar
Robinson, D., Bevins, R.E. & Rowbotham, G. (1993) The characterization of mafic phyllosilicates in lowgrade metabasites from eastern Northern Greenland. American Mineralogist, 78, 377390.Google Scholar
Sandier, A., Nathan, Y., Eshet, Y. & Raab, M. (2001) Diagenesis of trioctahedral clays in a Miocene to Pleistocene sedimentary-magmatic sequence in the Dead Sea Rift, Israel. Clay Minerals, 36, 3947.Google Scholar
Schiffmann, P. & Fridleiffson, G.O. (1991) The smectitechlorite transition in drillhole NJ-15. Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigation. Journal of Metamorphic Geology, 9, 679696.CrossRefGoogle Scholar
Schiffmann, P. & Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487498.CrossRefGoogle Scholar
Schlenker, B. (1971) Petrographische Untersuchungen an Gipskeuper und Lettenkeuper von Stuttgart. Oberrheinische Geologische Abhandlungen, 20, 69.Google Scholar
Schiile, F. (1974) Petrographische Untersuchungen an den Bunten Mergaln des Mittleren Keupers. Dissertation (Doctor of Natural Science), Eberhard- Karls-Universitat, Tubingen, 80 pp.Google Scholar
Stephen, I. & MacEwan, D.M.C. (1950) Swelling chlorite. Geotechnique, 2, 82.Google Scholar
Stephen, I. & MacEwan, D.M.C. (1951) Some chloritic clay minerals of unusual type. Clay Minerals Bulletin, 1, 157.Google Scholar
Warrington, G. (1977) Palynological examination of Triassic (Keuper Marl & Rhaetic) deposits north-east and east of Bristol. Proceedings of the Ussher Society, 4, 7681.Google Scholar
Warrington, G. (1997) The Lyme Regis borehole, Dorset - palynology of the Mercia Mudstone, Peñarth and Lias Groups (Upper Triassic-Lower Jurassic). Proceedings of the Ussher Society, 9, 153–157.Google Scholar
Warrington, G., Whittaker, A. & Scrivener, R.C. (1986) The late Triassic succession in central and eastern Somerset. Proceedings of the Ussher Society, 4, 368374.Google Scholar
Weibel, R. (1999) Effects of burial on the clay assemblage in the Triassic Skagerrak Formation, Denmark. Clay Minerals, 34, 619636.CrossRefGoogle Scholar