Hostname: page-component-857557d7f7-nbs69 Total loading time: 0 Render date: 2025-11-27T08:35:18.223Z Has data issue: false hasContentIssue false

Hydration of alkali and alkaline-earth montmorillonites: an experimental comparative study from X-ray diffraction, water sorption isotherms and mid-infrared spectroscopy

Published online by Cambridge University Press:  06 August 2025

Mohamed Belhocine
Affiliation:
Materials Chemistry and Applications Laboratory, Tissemsilt University, Ahmed Ben Yahia Elwancharissi, Tissemsilt, Algeria Laboratory of Synthesis and Catalysis, Ibn-Khaldoun University, Tiaret, Algeria
Ahmed Haouzi
Affiliation:
Laboratory of Synthesis and Catalysis, Ibn-Khaldoun University, Tiaret, Algeria
Ty Phou
Affiliation:
Axe Nanostructure et Spectroscopies, Laboratoire Charles Coulomb, Univ. Montpellier, CNRS, Montpellier, France
David Maurin
Affiliation:
Axe Nanostructure et Spectroscopies, Laboratoire Charles Coulomb, Univ. Montpellier, CNRS, Montpellier, France
Philippe Dieudonne-George
Affiliation:
Axe Nanostructure et Spectroscopies, Laboratoire Charles Coulomb, Univ. Montpellier, CNRS, Montpellier, France
Jean-Louis Bantignies
Affiliation:
Axe Nanostructure et Spectroscopies, Laboratoire Charles Coulomb, Univ. Montpellier, CNRS, Montpellier, France
François Henn*
Affiliation:
Axe Nanostructure et Spectroscopies, Laboratoire Charles Coulomb, Univ. Montpellier, CNRS, Montpellier, France
*
Corresponding author: François Henn; Email: francois.henn@umontpellier.fr

Abstract

This study investigates the influence of interlayer cations on the thermodynamics and sorption mechanisms of water in a reference Wyoming montmorillonite. The behaviour of the montmorillonite exchanged with monovalent cations (Li+, Na+, K+, Rb+, Cs+) or divalent cations (Mg2+, Ca2+, Ba2+) is compared. The analysis combines X-ray diffraction (XRD), water sorption isotherms at various temperatures and mid-infrared spectroscopy. Li+, Mg2+ and Ca2+ promote greater water uptake and swelling, whereas K+, Rb+ and Cs+ significantly limit these processes. The behaviour of Na+ and Ba2+ stands out, demonstrating intermediate water uptake and high swelling. Mid-infrared spectral analysis supports these observations. It is shown that a cation’s effect on water uptake and swelling correlates best with the product of its elementary charge and ionic radius rather than with other properties such as the electrostatic potential, solvation enthalpy or chemical hardness. However, differences in isotherm shapes, hysteresis between adsorption and desorption and the variation of isosteric heat with water content suggest the presence of two distinct sorption mechanisms: one involving Li+, Cs+, Mg2+, Ca2+ and Ba2+, and another involving Na+, K+ and Rb+. These findings indicate that isotherm shape and swelling alone do not directly reflect water uptake capacity. These findings thus outline that the chaotropic (structure-breaking) or kosmotropic (structure-making) nature of the cations, along with the complex interplay between cation hydration and TOT layer attraction, may explain the complex observed differences.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdel-Karim, A.-A.M., Zaki, A.A., Elwan, W., El-Naggar, M.R. & Gouda, M.M. (2016) Experimental and modeling investigations of cesium and strontium adsorption onto clay of radioactive waste disposal. Applied Clay Science, 132–133, 391401.10.1016/j.clay.2016.07.005CrossRefGoogle Scholar
Belhocine, M., Haouzi, A., Bassou, G., Phou, T., Maurin, D., Bantignies, J.L. & Henn, F. (2018) Isosteric heat of water adsorption and desorption in homoionic alkaline-earth montmorillonites. Chemical Physics, 501, 2634.10.1016/j.chemphys.2017.11.012CrossRefGoogle Scholar
Ben Brahim, J., Armagan, N., Besson, G. & Tchoubar, C. (1986) Methode diffractometrique de caracterisation des états d’hydratation des smectites stabilité relative des couches d’eau inserées. Clay Minerals, 21, 111124.10.1180/claymin.1986.021.2.01CrossRefGoogle Scholar
Berend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L., Masion, A. & Thomas, F. (1995) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonites: 2. The Li+, Na+, K+, Rb+ and Cs+-exchanged forms. Clays and Clay Minerals, 43, 324336.10.1346/CCMN.1995.0430307CrossRefGoogle Scholar
Bergaya, F. & Lagaly, G. (2013) Handbook of Clay Science, 2nd edition, volume 5, Series Volume. Elsevier, Amsterdam, The Netherlands, pp.Google Scholar
Bernardina, S.D., Paineau, E., Brubach, J.-B., Judeinstein, P., Rouzière, S., Launois, P. & Roy, P. (2016) Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy. Journal of the American Chemical Society, 138, 1043710443.10.1021/jacs.6b02635CrossRefGoogle ScholarPubMed
Bodart, P.R., Delmotte, L., Rigolet, S., Brendle, J. & Gougeon, R. (2018) 7Li{19F} TEDOR NMR to observe the lithium migration in heated montmorillonite. Applied Clay Science, 157, 204211.CrossRefGoogle Scholar
Boek, E.S., Coveney, P.V. & Skipper, N.T. (1995) Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor. Journal of the American Chemical Society, 117, 1260812617.10.1021/ja00155a025CrossRefGoogle Scholar
Bors, J., Dultz, S. & Riebe, B. (2000) Organophilic bentonites as adsorbents for radionuclides: I. Adsorption of ionic fission products. Applied Clay Science, 16, 113.10.1016/S0169-1317(99)00041-1CrossRefGoogle Scholar
Cancela, G.D., Huertas, F.J., Taboada, E.R., Rasero, F.S. & Laguna, A.H. (1997) Adsorption of water vapor by homoionic montmorillonites: heats of adsorption and desorption. Journal of Colloid and Interface Science, 185, 343354.10.1006/jcis.1996.4572CrossRefGoogle Scholar
Cases, J.M., Bérend, I., Francois, M., Uriot, J.P., Michot, L.J. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 822.10.1346/CCMN.1997.0450102CrossRefGoogle Scholar
Chang, F.R.C., Skipper, N.T. & Sposito, G. (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates. Langmuir, 11, 27342741.10.1021/la00007a064CrossRefGoogle Scholar
Du, X. & Wang, N. (2022) Investigation into adsorption equilibrium and thermodynamics for water vapor on montmorillonite clay. AIChE Journal, 68, .10.1002/aic.17550CrossRefGoogle Scholar
Ferrage, E., Lanson, B., Sakharov, B.A. & Drits, V.A. (2005) Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties. American Mineralogist, 90, 13581374.10.2138/am.2005.1776CrossRefGoogle Scholar
Gregory, K.P., Elliott, G.R., Robertson, H., Kumar, A., Wanless, E.J., Webber, G.B. et al. (2022) Understanding specific ion effects and the Hofmeister series. Physical Chemistry Chemical Physics, 24, 1268212718.10.1039/D2CP00847ECrossRefGoogle ScholarPubMed
Hensen, E.J.M., Tambach, T.J., Bliek, A. & Smit, B. (2001) Adsorption isotherms of water in Li-, Na-, and K-montmorillonite by molecular simulation. Journal of Chemical Physics, 115, 33223329.10.1063/1.1386436CrossRefGoogle Scholar
Higgo, J.J.W. (1987) Clay as a barrier to radionuclide migration. Progress in Nuclear Energy, 19, 173207.10.1016/0149-1970(87)90015-1CrossRefGoogle Scholar
Kawakita, R., Saito, A., Sakuma, H., Anraku, S., Kikuchi, R., Otake, T. & Sato, T. (2023) Difference in expansion and dehydration behaviors between NH4- and K-montmorillonite. Applied Clay Science, 231, .10.1016/j.clay.2022.106722CrossRefGoogle Scholar
Khalfi, A. & Blanchart, P. (1999) Desorption of water during the drying of clay minerals. Enthalpy and entropy variation. Ceramics International, 25, 409414.10.1016/S0272-8842(98)00050-9CrossRefGoogle Scholar
Kharroubi, M., Balme, S., Haouzi, A., Belarbi, H., Sekou, D. & Henn, F. (2012) Interlayer cation–water thermodynamics and dynamics in homoionic alkali and alkaline-earth exchanged montmorillonites with low water loadings. Journal of Physical Chemistry C, 116, 1497014978.10.1021/jp303963rCrossRefGoogle Scholar
Kharroubi, M., Balme, S., Henn, F., Giuntini, J.C., Belarbi, H. & Haouzi, A. (2009) Dehydration enthalpy of alkali-cations-exchanged montmorillonite from thermogravimetric analysis. Journal of Colloid and Interface Science, 329, 339345.10.1016/j.jcis.2008.09.058CrossRefGoogle ScholarPubMed
Le Forestier, L., Muller, F., Villieras, F. & Pelletier, M. (2010) Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue. Applied Clay Science, 48, 1825.10.1016/j.clay.2009.11.038CrossRefGoogle Scholar
Lepoitevin, M., Jaber, M., Guégan, R., Janot, J.M., Dejardin, P., Henn, F. & Balme, S. (2014) BSA and lysozyme adsorption on homoionic montmorillonite: influence of the interlayer cation. Applied Clay Science, 95, 396402.10.1016/j.clay.2014.05.003CrossRefGoogle Scholar
Li, T., Chai, Z., Yang, Z., Xin, Z., Sun, H. & Yan, K. (2023) Insights into the influence mechanism of different interlayer cations on the hydration activity of montmorillonite surface: a DFT calculation. Applied Clay Science, 239, .10.1016/j.clay.2023.106965CrossRefGoogle Scholar
Liu, X-D. & Lu, X-C. (2006) A Thermodynamic understanding of clay-swelling inhibition by potassium ions. Angewandte Chemie, 45, 63006303.10.1002/anie.200601740CrossRefGoogle ScholarPubMed
Marcus, Y. (2009) Effect of ions on the structure of water: structure making and breaking. Chemical Reviews, 109, 13461370.10.1021/cr8003828CrossRefGoogle ScholarPubMed
Mauguin, C.H. (1928) Étude des Micas au moyen des rayons X. Bulletin de Minéralogie, 51, 285332.Google Scholar
Michot, L.J., Ferrage, E., Delville, & Jiménez-Ruiz, M. (2016) Influence of layer charge, hydration state and cation nature on the collective dynamics of interlayer water in synthetic swelling clay minerals. Applied Clay Science, 119, 375384.10.1016/j.clay.2015.11.005CrossRefGoogle Scholar
Mooney, R.W., Keenan, A.G. & Wood, L.A. (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction. Journal of the American Chemical Society, 74, 13711374.10.1021/ja01126a002CrossRefGoogle Scholar
Ng, E.-P. & Mintova, S. (2008) Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 114, 126.10.1016/j.micromeso.2007.12.022CrossRefGoogle Scholar
Norrish, K. (1954) The swelling of montmorillonite. Discussions of the Faraday Society, 18, 120134.10.1039/df9541800120CrossRefGoogle Scholar
Parr, R.G. & Pearson, R.G. (1983) Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105, 75127516.10.1021/ja00364a005CrossRefGoogle Scholar
Peng, C., Min, F., Liu, L. & Chen, J. (2016) A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface. Applied Surface Science, 387, 308316.10.1016/j.apsusc.2016.06.079CrossRefGoogle Scholar
Peng, J., Yi, H., Song, S., Zhan, W. & Zhao, Y. (2019) Driving force for the swelling of montmorillonite as affected by surface charge and exchangeable cations: a molecular dynamic study. Results in Physics, 12, 113117.10.1016/j.rinp.2018.11.011CrossRefGoogle Scholar
Rotenberg, R., Cadéne, A., Dufrêche, J.-F., Durand-Vidal, S., Badot, J.-C. & Turq, P. (2005) An analytical model for probing ion dynamics in clays with broadband dielectric spectroscopy. Journal of Physical Chemistry B, 109, 1554815557.CrossRefGoogle ScholarPubMed
Rutherford, D.W., Chiou, C.T. & Eberl, D.D. (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clays and Clay Minerals, 45, 534543.10.1346/CCMN.1997.0450405CrossRefGoogle Scholar
Salles, F., Bildstein, O., Douillard, J.M., Jullien, M., Raynal, J. & Van Damme, H. (2010) On the cation dependence of interlamellar and interparticular water and swelling in smectite clays. Langmuir, 26, 50285037.10.1021/la1002868CrossRefGoogle ScholarPubMed
Salles, F., Douillard, J.M., Bildstein, O., El Ghazi, S., Prelot, B., Zajac, J. & Van Damme, H. (2015) Diffusion of interlayer cations in swelling clays as a function of water content: case of montmorillonites saturated with alkali cations. Journal of Physical Chemistry C, 119, 1037010378.10.1021/jp512986dCrossRefGoogle Scholar
Salles, F., Douillard, J.-M., Denoyel, R., Bildstein, O., Jullien, M., Beurroies, I. & Van, Dammed H. (2009) Hydration sequence of swelling clays: evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510522.10.1016/j.jcis.2009.02.018CrossRefGoogle ScholarPubMed
Shen, W., Li, L., Zhou, H., Zhou, Q., Chen, M. & Zhu, J. (2018) Effects of charge density on the hydration of siloxane surface of montmorillonite: a molecular dynamics simulation study. Applied Clay Science, 159, 1015.10.1016/j.clay.2017.09.005CrossRefGoogle Scholar
Sun, L., Tanskanen, J.T., Hirvi, J.T., Kasa, S., Schatz, T. & Pakkanen, T.A. (2015) Molecular dynamics study of montmorillonite crystalline swelling: roles of interlayer cation species and water content. Chemical Physics, 455, 2331.10.1016/j.chemphys.2015.04.005CrossRefGoogle Scholar
Tajeddine, L., Gailhanou, H., Blanc, P., Lassin, A., Gaboreau, S. & Vieillard, P. (2015) Hydration–dehydration behavior and thermodynamics of MX-80 montmorillonite studied using thermal analysis. Thermochimica Acta, 604, 8393.10.1016/j.tca.2015.02.002CrossRefGoogle Scholar
Tomic, Z.P., Asanin, D., Antic-Mladenovic, S., Poharc-Logar, V. & Makreski, P. (2012) NIR and MIR spectroscopic characteristics of hydrophilic and hydrophobic bentonite treated with sulphuric acid. Vibrational Spectroscopy, 58, 95103.10.1016/j.vibspec.2011.11.002CrossRefGoogle Scholar
Velde, B. (1992) Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance. Chapman and Hall Ltd, London, UK, pp.10.1007/978-94-011-2368-6CrossRefGoogle Scholar
Vieillard, P., Blanc, P., Fialips, C.I., Gailhanou, H. & Gaboreau, S. (2011) Hydration thermodynamics of the SWy-1 montmorillonite saturated with alkali and alkaline-earth cations: a predictive model. Geochimica et Cosmochimica Acta, 75, 56645685.10.1016/j.gca.2011.07.014CrossRefGoogle Scholar
Wu, L., Liao, L. & Lv, G. (2015) Influence of interlayer cations on organic intercalation of montmorillonite. Journal of Colloid and Interface Science, 454, 17.10.1016/j.jcis.2015.04.021CrossRefGoogle ScholarPubMed
Wu, L., Liao, L., Lv, G., Qin, F. & Li, Z. (2014) Microstructure and process of intercalation of imidazolium ionic liquids into montmorillonite. Chemical Engineering Journal, 236, 306313.10.1016/j.cej.2013.09.063CrossRefGoogle Scholar
Zhang, J., Singh, R. & Webley, P.A. (2008) Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture. Microporous and Mesoporous Materials, 111, 478487.10.1016/j.micromeso.2007.08.022CrossRefGoogle Scholar
Zhang, X., Yi, H., Zhao, Y., Min, F. & Song, S. (2016) Study on the differences of Na- and Ca-montmorillonites in crystalline swelling regime through molecular dynamics simulation. Advanced Powder Technology, 27, 779785.10.1016/j.apt.2016.03.005CrossRefGoogle Scholar
Supplementary material: File

Belhocine et al. supplementary material

Belhocine et al. supplementary material
Download Belhocine et al. supplementary material(File)
File 1.1 MB