Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:19:33.270Z Has data issue: false hasContentIssue false

Fuchsite and other Cr-rich phyllosilicates in ultramafic enclaves from the Almadén mercury mining district, Spain

Published online by Cambridge University Press:  09 July 2018

D. Morata*
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 13518, correo 21, Santiago de Chile
P. Higueras
Affiliation:
Departamento de Ingeniería Geológica y Minera, Universidad de Castilla-La Mancha, 13400 Almadén, Ciudad Real, Spain
S. Domínguez-Bella
Affiliation:
Departamento de Cristalografía y Mineralogía, Estratigrafía, Geodinámica y Petrología y Geoquímica, Universidad de Cá diz, 11510 Puerto Real, Cádiz, Spain
J. Parras
Affiliation:
Departamento de Ingeniería Geológica y Minera, Universidad de Castilla-La Mancha, 13400 Almadén, Ciudad Real, Spain
F. Velasco
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao, Spain
P. Aparicio
Affiliation:
Departamento de Cristalografía y Mineralogía y Química Agrícola, Facultad de Química, Universidad de Sevilla, Apdo. 553, 41041 Sevilla, Spain

Abstract

Fuchsite and other Cr-rich phyllosilicates, paragenetic with dolomite, are present in some ultramafic enclaves from the ‘frailesca’ rock (a lapilli- to block-size pyroclastic lithic-tuff), in the Almadén mercury mining district, Spain. Analyses (EMPA and TEM) of fuchsite and Cr-chlorite showed a relatively large range in levels of Cr2O3. Petrographic relationships between these phyllosilicates and primary relics of Cr-spinel crystals, as well as their high Cr content, indicate that these Cr-rich minerals originated from primary chromian spinels through an early hydrothermal alteration stage. The hydrothermal fluids accounting for this early alteration would be of relatively high temperature, high aCO2 and aK, and variable aNa/K. In a later alteration stage, fuchsite was partially or totally replaced by illite and Cr-illite, giving rise to an argillitic alteration.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arif, M., Fallick, A.E. & Moon, C.J. (1996) The genesis of emeralds and their host rocks from Swat, northwestern Pakistan: a stable-isotope investigation. Mineral. Deposita, 31 255–268.Google Scholar
Christofides, G., Thimiatis, G., Koroneos, A., Sklavounos, S. & Eleftheriadis, G. (1992) Mineralogy and chemistry of Cr-chlorites associated with chromites from Vavdos and Vasilika ophiolite complexes (Chalkidiki, Macedonia, N. Greece). Chem. Erde, 54, 151–166.Google Scholar
Clifford, T.N., Rex, D.C., Green, R., Le Roex, A.P., Pienaar, H.S. & Bühmann, D. (1999) Chromian illiteankerite- quartz parageneses from the Kintail district of southern Ross-shire, Scotland. Mineral. Mag. 63, 37–52.Google Scholar
Craw, D. & Angus, P.V. (1993) Mafic/ultramafic clasts in deformed biotite zone metaconglomerate, Macraes mine, Haast Schist, New Zealand. New Zealand J. Geol. Geophys. 36 395–398.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1992) An Introdu ction to the Rock-fo rming Minerals. Longman Scientific & Technical, London, 696 pp.Google Scholar
Eichmann, R., Saupé, F. & Schidlowski, M. (1977) Carbon and oxygen isotope studies in rocks of the vicinity of the Almadén mercury deposit (province of Ciudad Real, Spain). Pp. 396–405 in: Time- and Strata-bound Ore Deposits (Klemm, D.D. & Schneider, H.D., editors). Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
Hall, C.M., Higueras, P., Kesler, S.E., Lunar, R., Dong, H. & Halliday, A.N. (1996) Datación 39Ar/40Ar de mineralizaciones de mercurio del Sinclinal de Almadén. Geogaceta, 20, 483–486.Google Scholar
Hall, C.M., Higueras, P., Kesler, S.E., Lunar, R., Dong, H. & Halliday, A.N. (1997) Dating of alteration episodes related to mercury mineralization in the Almadén district. Earth Planet. Sci. Lett. 148, 287–298.Google Scholar
Hernández, A., Jébrak, M., Higueras, P., Oyarzun, R., Morata, D. & Munhá, J. (1999) The Almadén mercury mining district, Spain. Mineral. Deposita, 34, 539–548.Google Scholar
Higueras, P. (1993) Alteration of basic igneous rocks from the Almadén mercury mining district. Pp. 131–134 in: Current Research on Geology Applied to Mineral Deposits (Fenoll, P., Gervilla, F. & Torres, J., editors). University of Granada, Spain.Google Scholar
Higueras, P. (1995) Procesos petrogenéticos y de alteración de las rocas magmáticas asociadas a las mineraliza ciones de mercurio del distrito de Almadén. PhD thesis, Univ. Granada, Spain.Google Scholar
Higueras, P., Parras, J. & Sánchez, C. (1995) Procesos de alteración asociados a la removilización hidrotermal de cinabrio en el yacimiento de ‘Las Cuevas’ (Almadén, Ciudad Real). Bol. Soc. Esp. Min. 18, 191–200.Google Scholar
Higueras, P., Oyarzun, R., Lunar, R., Sierra, J. & Parras, J. (1999) The Las Cuevas deposit, Almadén district (Spain): Unusual case of deep-seated advanced argillic alteration related to mercury mineralization. Mineral. Deposita, 34, 211–214.CrossRefGoogle Scholar
Higueras, P., Oyarzun, R., Munhá, J. & Morata, D. (2000) The Almadén mercury metallogenic cluster (Ciudad Real, Spain): Alkaline magmatism leading to mineralization processes at an intraplate tectonic setting. Rev. Soc. Geol. España, 13, 105–119.Google Scholar
Jébrak, M. & Hernández, A.M. (1995) Tectonic deposition of mercury in the Almadén district, Las Cuevas deposit, Spain. Mineral. Deposita, 30, 413–423.Google Scholar
Jiang, W.-T., Peacor, D.R. & Slack, J.F. (1992) Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulfide deposit, Ontario. Clays Clay Miner. 40, 501–514.Google Scholar
Martin Ramos, J.D. & Rodríguez Gallego, M. (1982) Chromium mica from Sierra Nevada, Spain. Mineral. Mag. 46, 269–272.Google Scholar
Moritz, R.P. & Crocket, J.H. (1991) Hydrothermal wallrock alteration and formation of the gold-bearing quartz-fuchsite vein in the Dome mine, Timmins area, Ontario, Canada. Econ. Geol. 86, 620–643.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1–128 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Longman Scientific & Technical, London.Google Scholar
Ortega, E. & Hernández, A. (1992) The mercury deposits of the Almadén syncline, Spain. Chron. Rech. Min. 506, 3–11.Google Scholar
Petschik, R. (2000) MacDiff 4.1.2. Powder diffraction software. Available from the author at http:// www.geol. uni- erlangen. de/html /software/macdiff. html Google Scholar
Rytuba, J.J., Rye, R.O., Hernández, A.M., Dean, J.A. & Arribas, A. (Sr) (1988) Genesis of Almadén type mercury deposits, Almadén, Spain. Int. Geol. Congr. Washington, abstract.Google Scholar
Saupé, F. (1990) Geology of the Almadén mercury deposit, Province of Ciudad Real, Spain. Econ. Geol. 85, 482–510.Google Scholar
Schlandl, E.S. & Wicks, F.J. (1993) Carbonate and associated alteration in ultramafic and rhyolitic rocks at the Hemingway property, Kidd Creek volcanic complex, Timmins, Ontario. Econ. Geol. 88, 1615–1635.Google Scholar