Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T01:56:00.706Z Has data issue: false hasContentIssue false

Characterization of kaolin from Mankon, northwest Cameroon

Published online by Cambridge University Press:  27 November 2018

A. Nzeukou Nzeugang*
Affiliation:
Local Materials Promotion Authority (MIPROMALO), PO Box, 2396 Yaoundé, Cameroon
M. El Ouahabi
Affiliation:
Laboratory of Clays, Geochemistry and Sedimentary Environments (AGEs), Département de Géologie, Université de Liège, Quartier Agora, Allée du six Août, 14B-4000 Liège, Belgium
B. Aziwo
Affiliation:
Local Materials Promotion Authority (MIPROMALO), PO Box, 2396 Yaoundé, Cameroon
J.R. Mache
Affiliation:
Local Materials Promotion Authority (MIPROMALO), PO Box, 2396 Yaoundé, Cameroon
H.S. Mefire Mounton
Affiliation:
EGEM Meiganga, University of Ngaoundere, PO Box, 115 Ngaoundere, Cameroon
N. Fagel
Affiliation:
Laboratory of Clays, Geochemistry and Sedimentary Environments (AGEs), Département de Géologie, Université de Liège, Quartier Agora, Allée du six Août, 14B-4000 Liège, Belgium
*

Abstract

A kaolin deposit from Mankon (northwest Cameroon) was prospected and studied for potential applications in ceramics. Six samples were investigated with X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM) to determine the mineralogical composition and with X-ray fluorescence (XRF) to determine the chemical composition and properties for ceramic applications. The main minerals in the clays are kaolinite/halloysite and anatase associated with alunite, illite, gibbsite and maghemite. The kaolin samples have abundant organic matter (4–10%) and low absorption of methylene blue (0.2–2.5 meq/100 g), while SiO2 (33.28–56.31%) and Al2O3 (19.26–35.87%) are major oxides. The particle-size distribution derived from sieving and the hydrometer method indicates that 12–38% of the samples are in the <2 μm clay fraction. The clays have low to moderate plasticity (7–21%). One sample with K-feldspar and plagioclase displays the necessary properties for red ceramic products. SEM confirmed the occurence of halloysite in sample M9. The high kaolinite/halloysite content (64–97%), associated with low Fe2O3 content (0.5–1.4%) demonstrates that five samples are suitable raw materials for white firing industrial kaolin.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the session: ‘CZ-01 – Clays for ceramics’ of the International Clay Conference 2017.

Guest Associate Editor: Michele Dondi

References

REFERENCES

Afungang, N.R. (2015) Spatiotemporal Probabilistic Assessment of Landslide Hazard along Bamenda Mountain Region of the Cameroon Volcanic Line. PhD thesis, Universities of Yaoundé 1, Cameroon, and Porto, Portugal.Google Scholar
American Society for Testing and Materials (1972) Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. ASTM-C 373-72.Google Scholar
American Society for Testing and Materials (1977) Flexural Properties of Ceramic Whiteware Materials. ASTM-C 674-77.Google Scholar
American Society for Testing Materials (1998) Standard Test Method for Particle-Size Analysis of Soils. ASTM-D-422-63.Google Scholar
American Society for Testing and Materials (2000) Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM-D-4318.Google Scholar
Andrade, F.A., Al-Qureshia, H.A. & Hotza, D. (2011) Measuring the plasticity of clays: a review. Applied Clay Science, 51, 17.Google Scholar
Barrchina, E., Calvet, I., Fraga, D. & Carda, J.B. (2017) Ceramic porcelain stoneware production with Spanish clays purified by means of the removal of iron compounds and organic matter using physical methods. Applied Clay Science, 14, 258264.Google Scholar
Boulingui, J.E., Nkoumbou, C., Njoya, D., Thomas, F. & Yvon, J. (2015) Characterization of clays from Mezafe and Mengono (Ne-Libreville, Gabon) for potential uses in fired products, Applied Clay Science, 115, 132144.Google Scholar
Bundy, W. (1993) The Diverse Industrial Applications of kaolin. Pp. 4373. Special Publication No. 1, Clay Minerals Society, Boulder, CO, USA.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Minéralogie des Argiles: Tome 8: Structure et Propriétés Physicochimiques. Actualités Scientifiques et Egronomiques, Edition Masson, Paris, France.Google Scholar
Christidis, G.E., editor (2011) Advances in the Characterization of Industrial Clays. EMU Notes in Mineralogy, 9. European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland, Twickenham, UK, Great Britain and Ireland.Google Scholar
De Modesto, C.O. & Bernardin, A.M. (2008) Determination of clay plasticity: indentation method versus Pfefferkorn method. Applied Clay Science, 40, 1519.Google Scholar
Dill, H.G. (2016) Kaolin: soil, rock and ore from the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Science Reviews, 161, 16129.Google Scholar
Dondi, M., Mariarosa, R. & Chiara, Z. (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Applied Clay Science, 96, 91109.Google Scholar
Ekosse, G., (2000) The Makoro kaolin deposit, southeastern Botswana: its genesis and possible industrial applications. Applied Clay Science, 16, 301320.Google Scholar
Elfil, H., Srasra, E. & Dogguy, M. (1995) Caractérisations physico-chimiques de certaines argiles utilisées dans l'industrie céramique. Journal of Thermal Analysis, 44, 663683.Google Scholar
Farmer, V.C. (1974) The layered silicates. Pp. 331364 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London, UK.Google Scholar
Fiori, C., Fabbri, B., Donati, F. & Venturi, I. (1989) Mineralogical composition of the clay bodies used in the Italian tiles industry. Applied Clay Science, 4, 461473.Google Scholar
Ferrari, S. & Gualtieri, A.F. (2006) The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 7381.Google Scholar
Guedjeo, C., Kagou, D.A., Ngapgue, F., Nkouathio, D.G., Zangmo, T.G., Gountié, D.M. & Nono, A. (2013) Natural hazards along the Bamenda escarpment and its environs: the case of landslide, rock fall and flood risks (Cameroon volcanic line, north-west region). Global Advanced Research Journal of Geology and Mining Research, 2, 1526.Google Scholar
Gountié, D.M. (2012) Dynamic and evolution of the Mounts Bamboutos and Bamenda calderas by study of ignimbritic deposits (west-Cameroon, Cameroon Line). Syllabus Review, Science Series, 3, 1123.Google Scholar
Hawkins, P. & Brunt, M. (1965) Soils and Ecology of West Cameroon. FAO, Rome, Italy.Google Scholar
Herrmann, L., Anongrak, N., Zarei, M., Schuler, U. & Spohrer, K. (2007) Factors and processes of gibbsite formation in northern Thailand. Catena, 71, 279291.Google Scholar
Kamgang, P., Chazot, G., Njonfang, E. & Tchoua, F. (2008) Geochemistry and geochronology of mafic rocks from Bamenda Mountains (Cameroon): source composition and crustal contamination along the Cameroon Volcanic Line. Compte Rendu Géoscience, 340, 850857.Google Scholar
Kamgang, P., Chazot, G., Njonfang, E., Tchuimegnie, N. & Tchoua, F. (2013) Mantle sources and magma evolution beneath the Cameroon Volcanic Line: geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon). Gondwana Research, 24, 727741.Google Scholar
Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Miselli, P., Giancarlo, P., & Chinje, U.M. (2007) Characterisation of porcelain compositions using two china clays from Cameroon. Ceramics International, 33, 851857.Google Scholar
Karfa, T., Blanchart, P., Jernot, J.-P. & Gomina, M. (2007) Caractérisation physicochimique et mecanique de materiaux céramiques obtenus à partir d'une argile kaolinitique du Burkina Faso. Compte Rendu de Chimie, 10, 511517.Google Scholar
Lambercy, E. (1993) Les Matières Premières Céramiques et Leurs Transformations par le Feu. Des Dossiers Argile. La Rochegiron, 04150 Banon, France, 510 pp.Google Scholar
Lemaître, J., Leonard, J. & Delmon, B. (1977) The sequence of phases in the 900–1050°C transformation of metakaolinite. Proceedings of International Clay Conference, 60, 37–3.Google Scholar
Melo, U.C., Kamseu, E. & Djangang, C. (2003) Effects of fluxes on the fired properties between 950–1050°C of some Cameroonian clays. Tile & Brick International, 19, 384390.Google Scholar
Murray, H.H. (2007) Applied Clay Mineralogy, Volume 2: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays. Developments in Clay Science. Elsevier, Amsterdam, The Netherlands.Google Scholar
Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K. & Ahmad, Z.A. (2011) Some ceramic properties of clays from central Cambodia. Applied Clay Science, 53, 3341.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtin-Nomade, A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.Google Scholar
Nkalih, M.A., Njoya, A., Yongue, F.R., Mache, J.R., Nzeukou, N.A., Siniapkine, S., Flament, P., Melo Chinje, U., Ngono, A. & Fagel, N. (2015) Kaolin occurrence in Koutaba (west-Cameroon): mineralogical and physicochemical characterization for ceramic products. Clay Minerals, 50, 1524.Google Scholar
Nkoumbou, C., Njoya, A., Njoya, D., Grosbois, C., Njopwouo, D., Yvon, J. & Martin, F. (2009) Kaolin from Mayouom (western Cameroon): industrial suitability evaluation. Applied Clay Science, 43, 118124.Google Scholar
Norme Française-AFNOR NFP18-592 (1990) Essai au Bleu, Association Française de Normalisation. La Défense, Paris, France.Google Scholar
Nzenti, J., Abaga, B., Cheo, E. & Nzolang, C. (2011) Petrogenesis of peraluminous magmas from the Akum-Bamenda Massif, Pan-African Fold Belt, Cameroon. International Geology Review, 53, 11211149.Google Scholar
Nzeukou Nzeugang, A., Medjo Eko, R., Fagel, N., Kamgang Kabeyene, V., Njoya, A., Balo Madi, A., Mache, J.-R. & Melo Chinje, U. (2013) Characterization of clay deposits of Nanga-Eboko (central Cameroon): suitability in the production of building materials. Clay Minerals, 48, 655662.Google Scholar
Nzeukou, A., Traina, K., Medjo, E.R., Kamseu, E., Njoya, A., Melo, U.C., Kamgang, B.V., Cloots, R. & Fagel, N. (2014) Mineralogical and physical changes during sintering of plastic red clays from Sanaga Swampy Valley, Cameroon. Interceram, 63(4), 186192.Google Scholar
Ossah, N.H. (1975) Altération des Roches Volcaniques dans les Monts Bamenda, Cameroun. Géologie, Minéralogie et Géochimie. Doctoral thesis. Université Paris VI, Paris, France.Google Scholar
Pialy, P.Nkoumbou, C., Villieras, F., Razafitianamaharavo, A., Barres, O., Pelletier, M., Ollivier, G., Bihannic, I., Njopwouo, D., Yvon, J. & Bonnet, J.-P. (2008) Characterization for industrial applications of clays from Lembo deposit, Mount Bana (Cameroon). Clay Minerals, 43, 415435.Google Scholar
Pruett, R.J. (2016) Kaolin deposits and their uses: northern Brazil and Georgia. Applied Clay Science, 131, 313.Google Scholar
Quantin, P., Gautheyrou, J. & Lorenzoni, P. (1988) Halloysite formation through in situ weathering of volcanic glass from trachytic pumices, Vico's Volcano, Italy. Clay Minerals, 23, 423437.Google Scholar
Reeves, G.M., Sims, I. & Cripps, J.C. (2006) Clay Materials Used in Construction. Geological Society of London, London, UK.Google Scholar
Scarlett, N.V.Y., Madsen, I.C., Cranswick, L.M.D., Lwin, T, Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002) Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: Samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. Journal of Applied Crystallography, 35, 383400.Google Scholar
Scott, K.M. (1992) Origin of alunite- and jarosite-group minerals in the Mt. Leyshon epithermal gold deposit, northeast Queensland, Australia – reply. American Mineralogist, 77, 860862.Google Scholar
Strazzera, B., Dondi, M. & Marsigli, M. (1997) Composition and ceramic properties of Tertiary clays from southem Sardinia (Italy). Applied Clay Science, 12, 247266.Google Scholar
Swapan, K., Kausik, D., Nar, S. & Ritwik, S. (2005) Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile composition. Applied Clay Science, 29, 137143.Google Scholar
Wilson, I.R. (2004) Kaolin and halloysite deposits of China. Clay Minerals, 39, 115.Google Scholar
Vallerie, M. (1973) Notice Explicative No. 45. Carte Péddologique du Cameroun Occidental à 1/1 000 000. ORSTOM, Yaounde, Cameroon.Google Scholar
Wouatong, G.A., Kitagawa, R., Takeno, S., Tchoua, F.M. & Njopwouo, D. (1996) Morphological transformation of kaolin minerals from granite saprolite in the western part of Cameroon. Clay Science, 10, 6781.Google Scholar