Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:51:49.156Z Has data issue: false hasContentIssue false

Characterization and distribution of clay minerals in the soils of Fildes Peninsula and Ardley Island (King George Island, Maritime Antarctica)

Published online by Cambridge University Press:  13 January 2023

Marta Pelayo*
Affiliation:
CIEMAT – Department of Environment, Avda. Complutense, 40, 28040 Madrid, Spain
Thomas Schmid
Affiliation:
CIEMAT – Department of Environment, Avda. Complutense, 40, 28040 Madrid, Spain
Francisco Javier Díaz-Puente
Affiliation:
CIEMAT – Department of Environment, Avda. Complutense, 40, 28040 Madrid, Spain
Jerónimo López-Martínez
Affiliation:
Faculty of Sciences, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract

The environmental conditions in Maritime Antarctica are more favorable to soil development than in continental areas, which is reflected in the content and type of clay minerals present. In this context, soil clay minerals of Fildes Peninsula, South Shetland Islands were studied with the aim of relating them to periglacial and paraglacial processes as possible indicators of initial pedogenic processes. In this work, textural, mineralogical and crystallochemical characterization of clay minerals as well as chemical and physical soil analyses were carried out. The soil samples represented various surface cover types present on Fildes Peninsula. All samples were composed mainly of clay minerals, plagioclase, quartz and minor zeolites and pyroxene. The clay mineral content was very variable and reached up to 63% w/w. The clay minerals present are mainly smectite, vermiculite, chlorite and minor kaolinite, mica, corrensite and interstratified illite–smectite, with smectite and vermiculite dominating in almost all of the samples. The primary minerals display chemical alteration, and smectite formed by alteration of plagioclase. The clay mineral types were related to the parent material, which was affected by low-grade metamorphism and hydrothermal alteration that transformed biotite and chlorite into vermiculite via interstratified chlorite–vermiculite. Furthermore, this process and/or ongoing surface weathering transformed vermiculite into smectite. The genetic relationship observed between vermiculite and smectite suggests progressive alteration and transformation into a phase with intermediate composition between vermiculite and smectite. Therefore, vermiculite could be at least in part the smectite precursor. Samples closer to the current Collins Glacier front are composed mainly of vermiculite, with the greatest chemical variation occurring where the soils were developed from a mixture of initially glacially transported volcanic rocks through periglacial and fluvial processes. The clay minerals from the centre and south of Fildes Peninsula are mixtures of montmorillonite and vermiculite, as well as of chlorite and corrensite in various proportions. The clay minerals in soils developed on the west coast are a mixture of Fe-rich montmorillonite and vermiculite.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: J. Cuadros

References

AENOR (1995) Análisis granulométrico de suelos finos por sedimentación. Método del densímetro. UNE 103 102. AENOR, Madrid, Spain, 15 pp.Google Scholar
Allison, L.E. (1965) Organic carbon. Pp. 13721378 in: Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties (Black, C.A., editor). American Society of Agronomy, Madison, WI, USA.Google Scholar
April, R.H., Hluchy, M.M. & Newton, R.M. (1986) The nature of vermiculite in adirondack soils and till. Clays and Clay Minerals, 34, 549556.CrossRefGoogle Scholar
Balks, M.R., López-Martínez, J., Goryachkin, S.V., Mergelov, N.S., Schaefer, C.E.G.R., Simas, F.N.B. et al. (2013) Windows on Antarctic soil–landscape relationships: comparison across selected regions of Antarctica. Geological Society, London, Special Publications, 381, 397410.CrossRefGoogle Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: Evaluación de algunos ensayos de materias primas. PhD thesis, Universidad de Granada, Granada, Spain, 398 pp.Google Scholar
Bastias, J., Fuentes, F., Aguirre, L., Hervé, F., Fernandoy, F. & Demant, A. (2013) Zeolites and mafic phyllosilicates in Livingston Island, Antarctica. Mineralogical Magazine, 77, 666.Google Scholar
Belhouideg, S. & Lagache, M. (2014) Experimental determination of the mechanical behaviour of compacted exfoliated vermiculite. Strain, 51, 101109.CrossRefGoogle Scholar
Birkenmajer, K., Narebski, W., Nicolleti, M. & Petrucciani, C. (1983) Late Cretaceous through Late Oligocene K–Ar ages of the King George Island Supergroup volcanics, South Shetland Islands (West Antarctica). Bulletin, Académie Polonaise des Sciences, 30, 133143.Google Scholar
Blume, H.P., Beyer, L., Kalk, E. & Kuhn, D. (2002) Weathering and soil formation. Pp. 114138 in: Geoechology of Antarctic Ice-Free Coastal Landscapes (Beyer, L. & Bölters, M., editors). Spinger-Verlag, Berlin, Germany.Google Scholar
Blume, H.P., Chen, J., Kalk, E. & Kuhn, D. (2004) Mineralogy and weathering of Antarctic cryosols. Pp. 427445 in: Cryosols (Kimble, J.M., editor). Springer, Berlin, Germany.CrossRefGoogle Scholar
Bockheim, J.G. (2015) Soil-forming factors in Antarctica. Pp 520 in: The Soils of Antarctica (Bockheim, J.G., editor). Springer, Berlin, Germany.CrossRefGoogle Scholar
Bockheim, J.G., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M. et al. (2013) Climate warming and permafrost dynamics on the Antarctic Peninsula region. Global and Planetary Change, 100, 215223.CrossRefGoogle Scholar
Boy, J., Godoy, R., Shibistova, O., Boy, D., McCulloch, R., de la Fuente, A.A. et al. (2016) Successional patterns along soil development gradients formed by glacier retreat in the Maritime Antarctic, King George Island. Revista Chilena de Historia Natural, 89, 117.CrossRefGoogle Scholar
Brigatti, M.F. (1983) Relationship between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177186.CrossRefGoogle Scholar
Campbell, I.B. & Claridge, G.G.C. (1987) Antarctica: Soils, Weathering Processes and Environment. Elsevier Science Publishers B.V., New York, NY, USA, 368 pp.Google Scholar
Campos, A., Moreno, A. & Molina, R. (2009) Characterization of vermiculite by XRD and spectroscopic techniques. Earth Sciences Research Journal, 13, 108118.Google Scholar
Çelik, M., Karakaya, N. & Temel, A. (1999) Clay minerals in hydrothermally altered volcanic rocks, eastern Pontides, Turkey. Clays and Clay Minerals, 47, 708717.CrossRefGoogle Scholar
Christidis, G.E. (2011) The concept of layer charge of smectites and its implications for important smectite-water properties. EMU Notes in Mineralogy, 11, 239260.Google Scholar
Churchman, G.J. (1980) Clay minerals formed from micas and chlorites in some New Zealand soils. Clay Minerals, 15, 5976.CrossRefGoogle Scholar
FAO (2021) Standard Operating Procedure for Soil Electrical Conductivity, Soil/Water, 1:5. FAO, Rome, Italy, 17 pp.Google Scholar
Fretwell, P.T., Hodgson, D.A., Watcham, E.P., Bentley, M.J. & Roberts, S.J. (2010) Holocene isostatic uplift of the South Shetland Islands, Antarctic Peninsula, modelled from raised beaches. Quaternary Science Reviews, 29, 18801893.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497560 in: Hydrous Phyllosilicates (Exclusive of Micas) (Bailey, S.W., editor). Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Hall, B.L. (2007) Late-Holocene advance of the Collins Ice Cap, King George Island, South Shetland Islands. The Holocene, 17, 12531258.CrossRefGoogle Scholar
Hernández, A.C., Bastias, J., Matus, D. & Mahaney, W.C. (2018) Provenance, transport and diagenesis of sediment in polar areas: a case study in Profound Lake, King George Island. Antarctica Polar Research, 37, 1490619.CrossRefGoogle Scholar
Holmgren, G.G.S. (1967) A rapid citrate-dithionite extractable iron procedure. Soil Science Society of America Journal Proceedings, 31, 210211.CrossRefGoogle Scholar
Hur, S.D., Lee, J.I., Hwang, J. & Choe, M.Y. (2001) K–Ar age and geochemistry of hydrothermal alteration in the Barton Peninsula, King George Island, Antarctica. Ocean and Polar Research, 23, 1121.Google Scholar
IGM & INACH (1996) Carta Topográfica de la Isla Rey Jorge–Península Fildes, E. 1:10.000. Instituto Geográfico Militar de Chile (IGM) and Instituto Antárctico Chileno (INACH), Santiago, Chile.Google Scholar
Jeong, G.Y. & Yoon, H.I. (2001) The origin of clay minerals in soils of King George Island, South Shetland Island, West Antarctica, and its implications for the clay mineral compositions of marine sediment. Journal of Sedimentary Research, 71, 833842.CrossRefGoogle Scholar
Jie, C., Zitong, G. & Blume, H.P. (2000) Soils of Fildes Peninsula, King George Island, the Maritime Antarctic, part I, formation processes and pedogenetic particularities. Chinese Journal of Polar Science, 11, 2538.Google Scholar
Köppen, W. (1936) Das geographische System der Klimate, Handbuch der Klimatologie [The Geographical System of the Climate, Handbook of Climatology]. Borntraeger, Berlin, Germany, 44 pp.Google Scholar
Lee, Y.I., Lim, H.S. & Yoon, H.I. (2004) Geochemistry of soils of King George Island, South Shetland Island, West Antarctica: implication for pedogenesis in cold polar regions. Geochimica et Cosmochimica Acta, 68, 43194333.CrossRefGoogle Scholar
Lee, J.R., Raymond, B., Bracegirdle, T.J., Chadès, L., Fuller, R.A., Shaw, J.D. & Terauds, A. (2017) Climate change drives expansion of Antarctic ice-free habitat. Nature, 547, 4954.CrossRefGoogle ScholarPubMed
López-Martínez, J., Serrano, E., Schmid, T., Mink, S. & Linés, C. (2012) Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155–156, 6279.CrossRefGoogle Scholar
Lupachev, A.V., Abakumov, E.V., Goryachkin, S.V. & Veremeeva, A.A. (2020) Soil cover of the Fildes Peninsula (King George Island, West Antarctica). Catena, 193, 104613.CrossRefGoogle Scholar
Machado, A., de Lima, E.F., Chemale, F., Alexandre, F.M. Jr, Sommer, C.A., Figueiredo, A.M.G. & de Almeida, D.P.M. (2008) Mineral chemistry of volcanic rocks of South Shetlands Archipelago, Antarctica. International Geology Review, 50, 154162.CrossRefGoogle Scholar
Mäusbacher, R., Muller, J., Munnich, M. & Schmidt, R. (1989) Evolution of postglacial sedimentation in Antarctic lakes (King George Island). Zeitschrift für Geomorphologie, 33, 219234.CrossRefGoogle Scholar
McBride, M.B. (1994) Environmental Chemistry of Soils. Oxford University Press, Oxford, UK, 416 pp.Google Scholar
Mendonça, T., Melo, V.F., Schaefer, C.E.G.R., Simas, F.N.B. & Michel, R.F.M. (2013) Clay mineralogy of gelic soils from the Fildes Peninsula, Maritime Antarctica. Soil Science Society of America Journal, 77, 18421851.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Dias, L., Simas, F.N.B., Benites, V. & Mendonça, E.S. (2006) Ornithogenic gelisols (cryosols) from Maritime Antarctica: pedogenesis, vegetation and carbon studies. Soil Science Society of America Journal, 70, 13701376.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Poelking, E.L., Simas, F.N.B., Fernandes Filho, E.I. & Bockheim, J.G. (2012) Active layer temperature in two cryosols from King George Island, Maritime Antarctica. Geomorphology, 155–156, 1219.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., López-Martínez, J., Simas, F.N.B., Haus, N.W., Serrano, E. & Bockheim, J.G. (2014a) Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology, 225, 7686.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., Simas, F.M.B., Francelino, M.R., Fernandes-Filho, E.I., Lyra, G.B. & Bockheim, J.G. (2014b) Active-layer thermal monitoring on the Fildes Peninsula, King George Island, Maritime Antarctica. Solid Earth, 5, 13611374.CrossRefGoogle Scholar
Montecinos de Almeida, D.d.P., Machado, A., Fontoura Hansen, M.A., Chemale, F. Jr, Fensterseifer, H.C., Petry, K. & de Lima, L. (2003) An igneous event at the Fildes Peninsula (King George Island) and around Fort Point (Greenwich Island), South Shetland Islands, Antarctica. Revista Brasileira de Geociências, 33, 339348.Google Scholar
Moorberg, C.J. & Crouse, D.A. (2017). Soils Laboratory Manual, K-State edition. NPP eBooks 15. Retrieved from https://newprairiepress.org/ebooks/15Google Scholar
Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J.J., Serrano, E. et al. (2008) Soil characteristics on varying lithological substrates in the South Shetland Islands, Maritime Antarctica. Geoderma, 144, 123139.CrossRefGoogle Scholar
Newman, A.C.D. & Brown, G. (1987) Chemistry of Clays and Clay Minerals. Mineralogical Society, London, UK, 480 pp.Google Scholar
Nguyen, N., Balim, F., Penhoud, P., Duclaux, L., Mirabel, L., Reinert, L. et al. (2014) Elaboration and characterization of materials obtained by pressing of vermiculite without binder addition. Applied Clay Science, 101, 409418.CrossRefGoogle Scholar
Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P. et al. (2017) Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment, 580, 210223.CrossRefGoogle ScholarPubMed
Page, A.L., Miller, R.H. & Heeney, D.R. (1987) Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd edition. American Society of Agronomy and Soil Science Society of America, Madison, WI, USA, 1159 pp.Google Scholar
Pankhurst, R.J. & Smellie, J.L. (1983) K–Ar geochronology of the South Shetland Islands. Lesser Antarctica: apparent lateral migration of Jurassic to Quaternary island arc volcanism. Earth and Planetary Science Letters, 66, 214222.CrossRefGoogle Scholar
Park, M.E. (1990) Epithermal Alteration and Mineralization Characteristics of Barton Peninsula, King George Island. Report BSPG, 00111-317-7. Korean Ocean Research and Development Institute, Seoul, Republic of Korea, 99 pp.Google Scholar
Pereira, T.C., Schaefer, C.E.R., Ker, J.C., Almeida, C.C. & Almeida, I.C.C. (2013) Micromorphological and microchemical indicators of pedogenesis in ornithogenic Cryosols (Gelisols) of Hope Bay, Antarctic Peninsula. Geoderma, 193–194, 311322.CrossRefGoogle Scholar
Peter, H.U., Buesser, C., Mustafa, O. & Pfeiffer, S. (2008) Risk Assessment for the Fildes Peninsula and Ardley Island, and Development of Management Plans for Their Designation as Specially Protected or Specially Managed Areas, Umweltbundesamt Research Report 203, 13-124, UBA-FB 001155e, Texte 20/08. Umweltbundesamt, Dessau-Rosslau, Germany, 508 pp.Google Scholar
Poggere, G.C., Melo, V, Curi, N., Schaefer, C.E.G.R. & Francelino, M.R. (2017) Adsorption and desorption of lead by low-crystallinity colloids of Antarctic soils. Applied Clay Science, 146, 371379.CrossRefGoogle Scholar
Queralt, J., Martí, A., Solé, M.A. & Plana, F. (1989) Zeolitizacion de rocas andesiticas. Estudios Geológicos, 45, 293298.CrossRefGoogle Scholar
Rakusa-Suszczewski, S. (2002) King George Island – South Shetland Islands, Maritime Antarctic. Pp. 2330 in: Geoecology of Antarctic Ice-Free Coastal Landscapes (Beyer, L. & Bölter, M., editors). Springer Verlag, Berlin, Germany.CrossRefGoogle Scholar
Rowell, D.L. (1994) Soil Science: Methods and Applications. Longman, Scientific and Technical, Harlow, UK, 350 pp.Google Scholar
Ruiz-Fernandez, J., Oliva, M., Nyvlt, D., Cannone, N., Garcia-Hernandez, C., Guglielmin, M. et al. (2019) Patterns of spatio-temporal paraglacial response in the Antarctic Peninsula region and associated ecological implications. Earth Science Reviews, 192, 379402.CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C. & Staff, Soil Survey (2012) Field Book for Describing and Sampling Soils, version 3.0. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE, USA, 298 pp.Google Scholar
Serrano, E. & López-Martínez, J. (2012) Geomorphological mapping in Antarctic periglacial environment. The geomorphological map of Fildes Peninsula (King George Island, South Shetlands archipelago). Pp. 518521 in: Proceedings of the Tenth International Conference on Permafrost, Vol. 4. IPA-Tyumen State Oil and Gas University, Tyumen, Russia.Google Scholar
Shultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. USGS Prof. Paper, 391-C. US Geological Survey, Reston, VA, USA, 31 pp.Google Scholar
Simas, F.N.B., Schaeffer, C.E.G.R., Melo, V.F., Guerra, M.B.B., Saunders, M. & Gilkes, R.J. (2006) Clay sized minerals in permafrost-affected soils (Cryosols) from King George Island, Antarctica. Clays and Clay Minerals, 54, 721736.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Michel, R.F.M., Francelino, M.R. & Bockheim, J.G. (2015) Soils of the South Orkney and South Shetland islands, Antarctica. Pp. 227273 in: The Soils of Antarctica (Bockheim, J.G., editor). Springer, Berlin, Germany.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., de Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V. et al. (2007) Ornithogenic cryosols from Maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 191203.CrossRefGoogle Scholar
Smellie, J.L., Pankhurst, R.J., Thomson, M.R.A. & Davies, R.E.S. (1984) The Geology of the South Shetland Island: VI. Stratigraphy, Geochemistry and Evolution. British Antarctic Survey Scientific Reports, 87. British Antarctic Survey, Cambridge, UK, 85 pp.Google Scholar
Soliani, E. Jr, Kawashita, K., Fensterseifer, H.C., Hansen, M.A.F. & Troian, F.L. (1988) K–Ar ages of the Winkel Point Formation (Fildes Peninsula Group) and associated intrusions, King George Island, South Shetland Islands, Antarctica. Série Científica, Instituto Antártico Chileno, 38, 133139.Google Scholar
Spinola, D.N., Pi-Puig, T., Solleiro-Rebolledo, E., Egli, M., Sudo, M., Sedov, S. & Kühn, P. (2017) Origin of clay minerals in early Eocene volcanic paleosols on King George Island, Maritime Antarctica. Scientific Reports, 7, 6368.CrossRefGoogle Scholar
Staff, Soil Survey (2014) Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, version 2.0. R. US Department of Agriculture, Natural Resources Conservation Service, Washington, DC, USA, 497 pp.Google Scholar
Tatur, A. (1989) Ornithogenic soils of the Maritime Antarctic. Polish Polar Research, 4, 481532.Google Scholar
Tatur, A. & Barczuk, A. (1985) Ornithogenic phosphates on King George Island, Maritime Antarctic. Pp. 163169 in: Antarctic Nutrient Cycles and Food Webs (Siegfried, W.R., Condy, P.R. & Laws, R.M., editors). Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
Turner, J., Barrand, N., Bracegirdle, T., Convey, P., Hodgson, D.A., Jarvis, M. et al. (2014) Antarctic climate change and the environment: an update. Polar Record, 50, 237259.CrossRefGoogle Scholar
Ugolini, F.C. (1976) Weathering and mineral synthesis in Antarctic soils Antarctic Journal of the United States, 11, 248249.Google Scholar
Ugolini, F.C. & Anderson, D.M. (1973) Ionic migration and weathering in frozen Antarctic soils. Soil Science, 115, 461470.Google Scholar
US Environmental Protection Agency (1986) Cation Exchange Capacity of Soils (Sodium Acetate) Method 9081. US Environmental Protection Agency, Washington, DC, USA, 4 pp.Google Scholar
Vennum, W.R. & Nejedly, J.W. (1990) Clay mineralogy of soils developed on weathered igneous rocks, West Antarctica. New Zealand Journal of Geology and Geophysics, 33, 579584.CrossRefGoogle Scholar
Walkley, A. & Black, I.A. (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 2938.CrossRefGoogle Scholar
Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261264.CrossRefGoogle Scholar
Watcham, E.P., Bentley, M.J., Hodgson, D.A., Roberts, S.J., Fretwell, P.T., Lloyd, J.M. et al. (2011) A new Holocene relative sea level curve for the South Shetland Islands, Antarctica. Quaternary Science Reviews, 30, 31523170.CrossRefGoogle Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals. Elsevier, New York,, NY, USA, 213 pp.Google Scholar
Willan, R. & Armstrong, D. (2002) Successive hydrothermal, volcanic-hydrothermal and contact-metasomatic events in Cenozoic volcanic-arc basalts, South Shetland Islands, Antarctica. Geological Magazine, 132, 209231.CrossRefGoogle Scholar
Wilson, M.J. (1999) The origin and formation of clay minerals in soils: past, present and future perspectives. Clay Minerals, 34, 725.CrossRefGoogle Scholar
Wilson, M.J. (2004) Weathering of the primary rock-forming minerals: processes, products and rates. Clay Minerals, 39, 233266.CrossRefGoogle Scholar
Wolters, F., Lagaly, G., Kahr, G., Nueesch, R. & Emmerich, K. (2009) A comprehensive characterization of dioctahedral smectites. Clays and Clay Minerals, 57, 115333.CrossRefGoogle Scholar
Ye, Z. & Tianjie, L. (1996) The pedogenic groups and diagnostic characteristics in the Fildes Peninsula of King George Island, Antarctica. Antarctic Research, 7, 7078.Google Scholar
Zhu, E., Sun, J., Liu, Y., Gong, Z. & Sun, L. (2011) Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing–thawing cycles and selected environmental variables. Antarctic Science, 23, 7892.CrossRefGoogle Scholar