Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T09:15:45.361Z Has data issue: false hasContentIssue false

Assessment of surface energetic heterogeneity of synthetic Na- saponites. The role of layer charge

Published online by Cambridge University Press:  09 July 2018

L. J. Michot*
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vanduvre Cedex, France
F. Villiéras
Affiliation:
Laboratoire Environnement et Minéralurgie, INPL-ENSG-CNRS UMR 7569, BP 40, 54501 Vanduvre Cedex, France

Abstract

High-resolution gas adsorption techniques were used to analyse the evolution of the aspect ratio and adsorption energy distribution on synthetic saponite samples with increasing layer charge. Using Ar as a gaseous probe, the aspect ratio of the saponite particles can be determined easily by decomposing the derivative adsorption isotherms and taking into account high-energy sites which can be assigned to talc-like ditrigonal cavities. Changes in the shape of the elementary particles are observed for layer charges above 1.30, i.e. when all the ditrigonal cavities contain at least one Al atom substituting for Si. When N2 is used as a probe, high-energy sites that could be wrongly interpreted as micropores on the basis of classical t-plot treatments are observed whatever the layer charge. Using the information obtained from both Ar and N2, schemes for describing adsorption can be proposed for all layer charges and suggest complex adsorption mechanisms for charged clay minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altin, O., Ozbelge, H.O. & Dogu, T. (1999) Effect of pH in an aqueous medium on the surface area, pore size distribution, density and porosity of montmorillonite. Journal of Colloid and Interface Science, 217, 1927.CrossRefGoogle Scholar
Bardot, F. (1998) Les minéraux argileux et leur hétérogénéité superficielle: Influence de la nature des cations compensateurs de l’illite sur les mécanismes d’adsorption de gaz. Doc. Sci. Thesis, Institut National Polytechnique de Lorraine, Nancy, France.Google Scholar
Bardot, F., Villiéras, F., Michot, L.J., François, M.,Gérard, G. & Cases, J.M. (1998) High resolution gas adsorption study on illites permuted with various cations: assessment of surface energetic properties. Journal of Dispersion Science and Technology, 19, 739759.CrossRefGoogle Scholar
Bardot, F., Villiéras, F., Michot, L.J., François, M., Gérard, G. & Cases, J.M. (2000) Application of very low relative pressure adsorption volumetry to study surface properties of clay minerals. Pp. 339344 in: Clays for our Future. Proceedings of the International Clay Confere nce, Ottawa (Kodama, H., Mermut, A. & Torrance, J., editors). Ottawa, Canada.Google Scholar
Brady, P.V., Cygan, R.T. & Nagy, K.L. (1996) Molecular controls on kaolinite surface charge. Journal of Colloid Interface Science, 183, 356364.Google Scholar
Braggs, B., Fornasiero, D., Ralston, J. & Smart, R.S..C. (1994) The effect of surface modification by an organosilane on the electrochemical properties of kaolinite. Clays and Clay Minerals, 42, 123136.CrossRefGoogle Scholar
Cases, J.M., Cunin, P., Grillet, Y., Poinsignon, C. & Yvon, J. (1986) Methods of analysing the morphology of kaolinites: relations between crystallographic and morphological properties. Clay Minerals, 21, 5568.Google Scholar
Conley, R.F. & Lloyd, M.D. (1971) Adsorption studies on kaolinites. II. Adsorption of amines. Clays and Clay Minerals, 19, 273282.CrossRefGoogle Scholar
De Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., Van Den Heuvel, A. & Osinga, Th.J. (1966) The t–curve of multimolecular N2 adsorption. Journal of Colloid and Interface Science, 21, 405414.Google Scholar
De la Calle, C. & Suquet, H. (1988) Vermiculite. Pp. 455496 in. Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Du, Q., Sun, Z., Forsling, W. & Tang, H. (1997) Acid-base properties of aqueous illite surfaces. Journal of Colloid and Interface Science, 187, 221231.CrossRefGoogle ScholarPubMed
Eberl, D.D., Drits, V., Środoń, J. & Nüesch, R. (1996) Mudmaster: a program for calculating crystallite size distribution and strain from the shapes of X-ray diffraction peaks. U.S. Geological Survey Open File Report 96171.Google Scholar
Gerschel, A. (1995) Liaisons intermoléculaires - Les forces en jeu dans la mati è re conden sé e. InterEditions/CNRS Edition, Paris.Google Scholar
Giese, R.F. (1988) Kaolin minerals. Structure and stabilities. Pp. 2966 in. Hydrous Phyllosilicates (Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Hamilton, D.L. & Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832838.Google Scholar
Kronberg, B., Kuortti, J. & Stenius, P. (1986) Competitive and cooperative adsorption of polymers and surfactant on kaolinite surfaces. Colloids and Surfaces, 18, 411425.CrossRefGoogle Scholar
Kulik, D.A., Aja, S.U., Sinitsyn, V.A. & Wood, W.A. (2000) Acid-base surface chemistry and sorption of some lanthanides on K+-saturated Marblehead illite: II. A multisite-surface complexation modeling. Geochimica Cosmochimica Acta, 64, 195213.CrossRefGoogle Scholar
Kuwahara, Y., Uehara, S. & Aoki, Y. (1998) Surface microtopography of lath-shaped hydrothermal illite by tapping-mode and contact mode AFM. Clays and Clay Minerals, 46, 574–542.CrossRefGoogle Scholar
Lambert, J.-F., Chevalier, S., Franck, R., Suquet, H. & Barthomeuf, D. (1994) Pillared Al-saponites. Part II, NMR studies. Journal of Chemical Society, Faraday Transactions, 90, 675680.CrossRefGoogle Scholar
Lee, J.-F., Lee, C.-K. & Juang, L.-C. (1999) Size effect of exchange cation on the pore structure and surface fractality of montmorillonit. Journal of Colloid and Interface Science, 217, 172176.CrossRefGoogle Scholar
Liétard, O., Yvon, J., Delon, J.F., Mercier, R. & Cases, J.M. (1980) Determination of the basal and lateral surfaces of kaolins. Variation with types of crystalline defects. Pp. 558582 in: Fine Particle Processing, Vol. 1 (Somasundaran, P., editor). AIME, New York.Google Scholar
Ma, C. & Eggleton, R.A. (1999) Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47, 174180.Google Scholar
Michot, L., François, M. & Cases, J.M. (1990) Surface heterogeneity studied by a quasi-equilibrium adsorption procedure. Langmuir, 6, 637643.CrossRefGoogle Scholar
Michot, L., Villiéras, F., Yvon, J. & Fourty, G. (1993) Multistage wet grinding of talc. Relation between physico- chemical parameters of the filler and mechanical properties of filled polypropylenes. Journal of Material Science, 28, 18561866.CrossRefGoogle Scholar
Michot, L.J., Villiéras, F., François, M., Yvon, J., Le Dred, R. & Cases, J.M. (1994) The structural microscopic hydrophilicity of talc. Langmuir, 10, 37653773.CrossRefGoogle Scholar
Michot, L.J., Villiéras, F., Lambert, J.F., Bergaoui, L., Grillet, Y. & Robert, J.L. (1998) Surface heterogeneity in micropores of pillared clays: the limits of classical pore- filling mechanisms. Journal of Physical Chemistry B, 102 (18), 34663476.CrossRefGoogle Scholar
Mühlenweg, H. & Dan Hirleman, E. (1998) Laser diffraction spectroscopy: influence of particle shape and shape adaptation technique. Particle and Particle Systems Characterization, 15, 163169.3.0.CO;2-8>CrossRefGoogle Scholar
Nagy, K.L. & Blum, A.E. (1994) Scanning Probe Microscopy of Clay Minerals. CMS Workshop lectures, Vol. 7. The Clay Minerals Society, Boulder, CO.Google Scholar
Pelletier, M., Michot, L.J., Barrès, O., Humbert, B. & Robert, J.L. (submitted) Influence of layer charge on the hydroxyl stretching of trioctahedral clay minerals: an Infrared and Raman study of synthetic Na and K-saponites. American Mineralogist.Google Scholar
Poirier, J.E. & Cases, J.M. (1991) Anionic surfactant adsorption onto silicate minerals: the role of the cations. Colloids and Surfaces, 55, 333344.CrossRefGoogle Scholar
Psyrillos, A., Howe, J.H., Manning, D.A.C. & Burley, S.D. (1999) Geological controls on kaolin particle shape and consequences for mineral processing. Clay Minerals, 34, 193208.CrossRefGoogle Scholar
Rémy, J.C. & Orsini, L. (1976) Utilisation du chlorure de cobaltihexamine pour la détermination simultanée de la capacité d’échange et des bases échangeables dans les sols. Science du Sol, 4, 269275.Google Scholar
Rutherford, D.W., Chiou, C.T. & Eberl, D.D. (1997) Effects of exchanged cation on the microporosity of montmorillonite. Clays and Clay Minerals, 45, 534543.CrossRefGoogle Scholar
Sánchez-Soto, P.J., Wiewióra, A., Avilés, M.A., Justo, A., Pérez-Maqueda, L.A., Pérez-Rodríguez, J.L. & Bylina, P. (1997) Talc from puebla de Lillo. II. Effect of dry grinding on particle size and shape. Applied Clay Science, 12, 297312.CrossRefGoogle Scholar
Sondi, I., Milat, O. & Pravdic, V. (1997) Electrokinetic potentials of clay surfaces modified by polymers. Journal of Colloid and Interface Science, 189, 6673.CrossRefGoogle Scholar
Środoń, J. & Elsass, F. (1994) Effect of shape of fundamental particles on XRD characteristics of illite minerals. European Journal of Mineralogy, 6, 113122.Google Scholar
Šucha, V., Środoń, J., Elsass, F. & McHardy, W.J. (1996) Particle shape versus coherent scattering domain of illite/smectite: evidence from HRTEM of Dolna Ves Clays. Clays and Clay Minerals, 44, 665671.Google Scholar
Suquet, H. (1978) Proprié tés de gonflement et structure de la saponite. Comparaison avec la vermiculite. Doc. ès Sci. Thesis, Univ. Paris VI, France.Google Scholar
Thomas, F., Michot, L.J., Vantelon, D., Montargès, E., Prélot, B., Cruchaudet, M. & Delon, J.F. (1999) Layer charge and electrophoretic mobility of smectites. Colloids and Surfaces A, 159 (23), 351358.CrossRefGoogle Scholar
Thompson, D.W., Macmillan, J.J. & Wyatt, D.A. (1981) Electron microscope studies of the surface microstructures of layer-lattice silicates. Journal of Colloid Interface Science, 82, 362372.CrossRefGoogle Scholar
Villiéras, F., Cases, J.M., François, M., Michot, L.J. & Thomas, F. (1992) Textural properties and surface energetic heterogeneity of solids from modelling of low pressure gas adsorption isotherms. Langmuir, 8, 17891795 CrossRefGoogle Scholar
Villiéras, F., Michot, L.J., Bardot, F., Cases, J.M., François, M. & Rudzinski, W. (1997a) An improved derivative isotherm summation method to study surface heterogeneity of clay minerals. Langmuir, 13, 11041117.CrossRefGoogle Scholar
Villiéras, F., Michot, L.J., Cases, J.M., Berend, I., Bardot, F., François, M., Gérard, G. & Yvon, J. (1997b) Static and dynamic studies of the energetic surface heterogeneity of clay minerals. Pp. 573623 in: Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces (Rudzinski, W., Steele, W.A. & Zgrablich, G., editors). Studies in Surface Science and Catalysis, 104. Elsevier Science B.V., Amsterdam, The Netherlands.CrossRefGoogle Scholar
Villiéras, F., Michot, L.J., Bernardy, E., Chamerois, M., Legens, C., Gérard, G. & Cases, J.M. (1999) High resolution gas adsorption study on mineral surfaces: assessment of surface heterogeneity of calcite and apatite. Colloids and Surfaces A, 146, 163174.Google Scholar
Ward, D.B. & Brady, P.V. (1998) Effect of Al and organic acids on the surface chemistry of kaolinite. Clays and Clay Minerals, 46, 453465.CrossRefGoogle Scholar
Zbik, M. & Smart, R.S..C (1998) Nanomorphology of kaolinites: comparative SEM and AFM studies. Clays and Clay Minerals, 46, 153160.CrossRefGoogle Scholar
Zbik, M. & Smart, R.S..C. (1999) Atomic force microscopy in the estimation of aspect ratio of colloidal kaolinite. Pp. 361366 in: Clays for our Future. Proceedings of the International Clay Conference, Ottawa (Kodama, H., Mermut, A. & Torrance, J., editors) Ottawa, Canada.Google Scholar
Zhang, Z.Z. & Bailey, G.W. (1998) Reactivity of basal surfaces, steps and edges of muscovite: an AFM study. Clays and Clay Minerals, 46, 290300.Google Scholar