No CrossRef data available.
Published online by Cambridge University Press: 12 February 2007
The influence of calcium and ABA on ethylene biosynthesis was investigated at different stages and patterns of tomato (Lycopersicon esculentum cv. Lichun) fruit to analyse the relationship between calcium and ABA in relation to the ethylene biosynthesis system. The ethylene production of discs excised from mature green tomato fruits increased rapidly with 100 μmol/l ABA or 100 mmol/l calcium treatment. The increase with the two treatments combined was more than that after application of a single chemical, which suggests that these two chemicals could play synergistic roles in the ethylene synthesis of mature green tomato fruits. It was also found that application of the calcium chelator EGTA inhibited ethylene synthesis, and the production of ethylene after application of EGTA plus ABA was higher than that after treatment with EGTA alone. However, the effect changed when immature fruits were treated with these chemicals. ABA inhibited ethylene synthesis obviously and calcium still promoted it. When we treated immature fruit discs with both calcium and ABA simultaneously, ethylene production was more than that of ABA and less than that of calcium, which indicates that ABA and calcium play agonistic roles in ethylene biosynthesis of the immature tomato fruit discs. Furthermore, ethylene release from transgenic antisense ACS immature tomato fruit discs with application of both calcium and ABA was inhibited markedly, but was stimulated when the mature fruits were treated with ABA and calcium. All of these data suggest that there are different relationships between calcium and ABA in the ethylene synthesis system in different patterns and stages of tomato fruit ripening.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.