Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T23:49:19.210Z Has data issue: false hasContentIssue false

Plenary Address, Australian Childhood Foundation Conference Childhood Trauma: Understanding the Basis of Change and Recovery Early Right Brain Regulation and the Relational Origins of Emotional Wellbeing

Published online by Cambridge University Press:  11 May 2015

Allan N. Schore*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
*
address for correspondence: Dr Allan N. Schore, UCLA David Geffen School of Medicine, 9817 Sylvia Avenue, Northridge, CA, 91324, USA. E-mail: aschore@ucla.edu

Abstract

During the past two decades an explosion of interdisciplinary research, especially in developmental neuroscience, has transformed and deepened our understanding of how the seminal social emotional events of infancy indelibly impact, for better or worse, all later stages of human development. In this article I briefly summarise my contributions in regulation theory towards that effort. After describing a current paradigm shift in the developmental sciences, I present an overview of my ongoing studies on the interpersonal neurobiology of the mother–infant attachment relationship. I offer research which indicates that optimal attachment experiences facilitate the experience-dependent maturation of the early developing ‘emotional’ right brain and thereby a predisposition for emotional wellbeing in later stages of life. I conclude with thoughts about the application of regulation theory for early intervention and prevention programs, as well as some larger implications for family law, cultural and political systems, and human capital formation.

Type
Articles
Copyright
Copyright © The Author(s) 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atzil, S., Hendler, T., & Feldman, R. (2011, 31 August). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology. doi:10.1038/npp.2011.172.CrossRefGoogle ScholarPubMed
Bourne, V. J., & Todd, B. K. (2004). When left means right: An explanation of the left cradling bias in terms of right hemisphere specializations. Developmental Science, 7, 1924.CrossRefGoogle ScholarPubMed
Bowlby, J. (1969). Attachment and loss. Vol. 1: Attachment. New York: Basic Books.Google Scholar
Brancucci, A., Lucci, G., Mazzatenta, A., & Tommasi, L. (2009). Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philosophical Transactions of the Royal Society of London Biological Sciences, 364, 895914.CrossRefGoogle ScholarPubMed
Cerqueira, J. J., Almeida, O. F. X., & Sousa, N. (2008). The stressed prefrontal cortex. Left? Right! Brain, Behavior, and Immunity, 22, 630638.CrossRefGoogle ScholarPubMed
Chiron, C., Jambaque, I., Nabbout, R., Lounes, R., Syrota, A., & Dulac, O. (1997). The right brain hemisphere is dominant in human infants. Brain, 120, 10571065.CrossRefGoogle ScholarPubMed
Czeh, B., Perez-Cruz, C., Fuchs, E., & Flugge, G. (2008). Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behavioral Brain Research, 190, 113.CrossRefGoogle ScholarPubMed
Decety, J., & Chaminade, T. (2003). When the self represents the other: A new cognitive neuroscience view on psychological identification. Consciousness and Cognition, 12, 577596.CrossRefGoogle Scholar
Decety, J., & Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to meta-cognition. The Neuroscientist, 13, 580593.CrossRefGoogle ScholarPubMed
Fonagy, P., & Target, M. (2002). Early intervention and the development of self-regulation. Psychoanalytic Inquiry, 22, 307335.CrossRefGoogle Scholar
Gainotti, G. (2006). Unconscious emotional memories and the right hemisphere. In Mancia, M. (Ed.), Psychoanalysis and neuroscience (pp. 151173). Milan: Springer Milan.CrossRefGoogle Scholar
Greenberg, L. S. (2007). Emotion coming of age. Clinical Psychology Science and Practice, 14, 414421.CrossRefGoogle Scholar
Grossmann, T., Johnson, M. H., Farroni, T., & Csibra, G. (2007). Social perception in the infant brain: Gamma oscillatory activity in response to eye gaze. Social Cognitive and Affective Neuroscience, 2, 284291.CrossRefGoogle ScholarPubMed
Grossmann, T., Oberecker, R., Koch, S. P., & Friederici, A. D. (2010). The developmental origins of voice processing in the human brain. Neuron, 65, 852858.CrossRefGoogle ScholarPubMed
Hecht, D. (2014). Cerebral lateralization of pro- and anti-social tendencies. Experimental Neurobiology, 23, 127.CrossRefGoogle ScholarPubMed
Hendriks, A. W., van Rijswijk, M., & Omtzigt, D. (2011). Holding-side influences on infant's view of mother's face. Laterality, 16, 641655.CrossRefGoogle ScholarPubMed
Knickmeyer, R. C., Gouttard, S., Kang, C., Evans, D., Wilber, K., Smith, J. K., . . . Gilmore, J. H. (2008). A structural MRI study of human brain development from birth to 2 years. Journal of Neuroscience, 28, 1217612182.CrossRefGoogle ScholarPubMed
Leckman, J. F., & March, J. S. (2011). Editorial: Developmental neuroscience comes of age. Journal of Child Psychology and Psychiatry, 52, 333338.CrossRefGoogle ScholarPubMed
Meares, R. (2012). A dissociation model of borderline personality disorder. New York: W.W. Norton.Google Scholar
Mento, G., Suppiej, A., Altoe, G., & Bisiacchi, P. S. (2010). Functional hemispheric asymmetries in humans: Electrophysiological evidence from preterm infants. European Journal of Neuroscience, 31, 565574.CrossRefGoogle ScholarPubMed
Minagawa-Kawai, Y., Matsuoka, S., Dan, I., Naoi, N., Nakamura, K., & Kojima, S. (2009). Prefrontal activation associated with social attachment: facial-emotion recognition in mothers and infants. Cerebral Cortex, 19, 284292.CrossRefGoogle ScholarPubMed
Montirosso, R., Cozzi, P., Tronick, E., & Borgatti, R. (2012). Differential distribution and lateralization of infant gestures and their relation to maternal gestures in the Face-to-Face Still-Face paradigm. Infant Behavior and Development, 35, 819828.CrossRefGoogle ScholarPubMed
Ogden, P., Pain, C., Minton, K., & Fisher, J. (2005). Including the body in mainstream psychotherapy for traumatized individuals. Psychologist–Psychoanalyst, 25, 1924.Google Scholar
Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal tone and the physiological regulation of emotion. Monographs of the Society for Research in Child Development, 59, 167186.CrossRefGoogle ScholarPubMed
Ratnarajah, N., Rifkin-Graboi, A., Fortier, M. V., Chong, Y. S., Kwek, K., Saw, S-M., . . . Qui, A. (2013). Structural connectivity in the neonatal brain. Neuromage, 75, 187194.CrossRefGoogle ScholarPubMed
Ryan, R. (2007). Motivation and emotion: A new look and approach for two reemerging fields. Motivation and Emotion, 31, 13.CrossRefGoogle Scholar
Schore, A. N. (1994). Affect regulation and the origin of the self. Mahweh, NJ: Erlbaum.Google Scholar
Schore, A. N. (2000). Attachment and the regulation of the right brain. Attachment and Human Development, 2, 2347.CrossRefGoogle ScholarPubMed
Schore, A. N. (2001a). The effects of a secure attachment relationship on right brain development, affect regulation, and infant mental health. Infant Mental Health Journal, 22, 766.3.0.CO;2-N>CrossRefGoogle Scholar
Schore, A. N. (2001b). The effects of relational trauma on right brain development, affect regulation, and infant mental health. Infant Mental Health Journal, 22, 201269.3.0.CO;2-9>CrossRefGoogle Scholar
Schore, A. N. (2001c). Contributions from the decade of the brain to infant mental health: An overview. Infant Mental Health Journal, 22, 16.3.0.CO;2-W>CrossRefGoogle Scholar
Schore, A. N. (2002). Dysregulation of the right brain: a fundamental mechanism of traumatic attachment and the psychopathogenesis of posttraumatic stress disorder. Australian and New Zealand Journal of Psychiatry, 36, 930.CrossRefGoogle Scholar
Schore, A. N. (2003a). Affect regulation and the repair of the self. New York: W.W. Norton.Google Scholar
Schore, A. N. (2003b). Affect dysregulation and disorders of the self. New York: W.W. Norton.Google Scholar
Schore, A. N. (2009a, 8 August). The paradigm shift: The right brain and the relational unconscious. Invited plenary address to the American Psychological Association 2009 Convention, Toronto, Canada. Retrieved from http://www.allanschore.com/pdf/SchoreAPAPlenaryFinal09.pdfGoogle Scholar
Schore, A. N. (2009b). Relational trauma and the developing right brain. An interface of psychoanalytic self psychology and neuroscience. Annals of the New York Academy of Sciences, 1159, 189203.CrossRefGoogle Scholar
Schore, A. N. (2010). Synopsis of Section on ‘Biological approaches to early life trauma’. In Lanius, R. A., Vermetten, E. & Pain, C. (Eds.), The impact of early life trauma on health and disease: The hidden epidemic (pp. 142147). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Schore, A. N. (2012a). The science of the art of psychotherapy. New York: W.W. Norton.Google Scholar
Schore, A. N. (2012b). Bowlby's ‘environment of evolutionary adaptedness’. Recent studies on the interpersonal neurobiology of attachment and emotional development. In Narvaez, D., Panksepp, J., Schore, A. N. & Gleason, T. R. (Eds.), Evolution, early experience and human development. From research to practice (pp. 3173). New York: Oxford University Press.CrossRefGoogle Scholar
Schore, A. N. (2013a). Regulation theory and the early assessment of attachment and autistic spectrum disorders: A response to Voran's clinical case. Journal of Infant, Child, and Adolescent Psychotherapy, 12, 164189.CrossRefGoogle Scholar
Schore, A. N. (2013b). Relational trauma, brain development, and dissociation. In Ford, J. D. & Courtois D., C. A. (Eds.), Treating complex traumatic stress disorders in children and adolescents, scientific foundations and therapeutic models (pp. 323). New York: Guilford Press.Google Scholar
Schore, A. N. (2014a). Early interpersonal neurobiological assessment of attachment and autistic spectrum disorders. Frontiers in Psychology, 5, article 1049. doi: 10.3389/fpsyg.2014.01049.CrossRefGoogle ScholarPubMed
Schore, A. N. (2014b). The right brain is dominant in psychotherapy. Psychotherapy, 51, 388397.CrossRefGoogle ScholarPubMed
Schore, A. N., & McIntosh, J. (2011). Family law and the neuroscience of attachment, Part l. Family Court Review, 49, 501512.CrossRefGoogle Scholar
Schore, A. N., & Newton, R. P. (2012). Using modern attachment theory to guide clinical assessments of early attachment relationships. In Bettmann, J. E. & Friedman, D. (Eds.), Attachment-based clinical work with children and adolescents (pp. 6196). New York: Springer.Google Scholar
Schore, J. (2012). Using concepts from interpersonal neurobiology in revisiting psychodynamic theory. Clinical Social Work Journal, 82, 90111.Google Scholar
Schore, J., & Schore, A. (2008). Modern attachment theory: The central role of affect regulation in development and treatment. Clinical Social Work Journal, 36, 920.CrossRefGoogle Scholar
Schore, J., & Schore, A. (2014). Regulation theory and affect regulation psychotherapy: A clinical primer. Smith College Studies in Social Work, 84, 178195.CrossRefGoogle Scholar
Semrud-Clikeman, M., Fine, J. G., & Zhu, D. C. (2011). The role of the right hemisphere for processing of social interactions in normal adults using functional magnetic resonance imaging. Neuropsychobiology, 64, 4751.CrossRefGoogle ScholarPubMed
Sieratzki, J. S., & Woll, B. (1996). Why do mothers cradle their babies on the left? Lancet, 347, 17461748.CrossRefGoogle Scholar
Silver, K. L., & Singer, P. A. (2014). Editorial: A focus on child development. Science, 345, 120.CrossRefGoogle Scholar
Stevenson, C. W., Halliday, D. M., Marsden, C. A., & Mason, R. (2008). Early life programming of hemispheric lateralization and synchronization in the adult medial prefrontal cortex. Neuroscience, 155, 852863.CrossRefGoogle ScholarPubMed
Sullivan, R. M., & Gratton, A. (2002). Prefrontal cortical regulation of hypothalamic–pituitary–adrenal function in the rat and implications for psychopathology: Side matters. Psychoneuroendocrinology, 27, 99114.CrossRefGoogle ScholarPubMed
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., . . . Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. Journal of Neuroscience, 29, 1472614733.CrossRefGoogle Scholar
UNICEF. (2013). Child well-being in rich countries: A comparative overview, Innocenti Report Card 11. Florence: UNICEF Office of Research.Google Scholar
Wada, J. A., & Davis, A. E. (1977). Fundamental nature of human infant's brain asymmetry. Canadian Journal of Neurological Sciences, 4, 203207.CrossRefGoogle ScholarPubMed
Wang, J., Rao, H., Wetmore, G. S., Furlan, P. M., Korczykowski, M., Dinges, D. F., & Detre, J. A. (2005). Perfusion functional MRI reveals cerebral blood flow pattern under psychological stress. Proceedings of the National Academy of Sciences of the United States of America, 102, 17804–17809.CrossRefGoogle Scholar