Hostname: page-component-54dcc4c588-wlffp Total loading time: 0 Render date: 2025-09-19T00:21:55.121Z Has data issue: false hasContentIssue false

New triple combination therapy approach for children with advanced heart failure despite having received standard heart failure treatment

Published online by Cambridge University Press:  01 September 2025

Isa Ozyilmaz*
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Halise Zeynep Genc
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Senay Coban
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Ahmet Saki Oguz
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Nurullah Yilmaz
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiovascular Surgery, Istanbul, Turkey
Ibrahim Cansaran Tanidir
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Erkut Ozturk
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiology, Istanbul, Turkey
Ali Can Hatemi
Affiliation:
Basaksehir Cam and Sakura City Hospital, Department of Pediatric Cardiovascular Surgery, Istanbul, Turkey
*
Corresponding author: Isa Ozyilmaz; Email: isaozyilmaz@gmail.com

Abstract

Aim:

The limited efficacy of monotherapy and the insufficient clinical experience with triple therapy (levosimendan, dapagliflozin, and sacubitril/valsartan) warrant further investigation. The aim of this study was to evaluate the effects of triple therapy on left ventricular function in children with advanced heart failure whose left ventricular function had not improved despite classical heart failure treatment and who remained dependent on inotropes.

Methods:

The study included children who were admitted to the hospital with advanced heart failure and who were still inotrope-dependent at a mean of 42 days after the start of classical heart failure treatment and then started triple therapy at our hospital.

Results:

The study included 18 patients, 8 (44%) males, with a median age of 4 years (2–7 years). Before and after classical treatment and after triple treatment, statistically significant improvement in two-dimensional left ventricular ejection fraction (%) (median values 30; 38; 55, respectively), left ventricular end-diastolic diameter (median values 44; 45; 40 mm), left ventricular end-systolic diameter (median values 38; 36; 29 mm), left ventricular end-diastolic diameter (z score) (median values 4.2; 3.2; 2.7), left ventricular end-systolic diameter (z score) (median values 5.8; 4.8; 3.2), Simpson left ventricular ejection fraction (%) (median values 29; 36.5; 55), Simpson left ventricular end-diastolic volume (median values 60; 55; 43 ml), left ventricular end-systolic volume (median values 43; 40; 18. 5 ml), left ventricular global longitudinal strain four-chamber (median values -8.1;-10;-19), left ventricular global longitudinal strain three-chamber (median values -5.9;-8.9;-14), and left ventricular global longitudinal strain mean (median values -6.9;-9.7;-19) values was observed (all values p < 0.05).

Conclusions:

In children admitted to the hospital with advanced heart failure whose left ventricular function has not improved with classical therapy, it seems likely that both left ventricular systolic and diastolic function will improve, inotrope dependency will resolve, and patients can be discharged with the new triple drug therapy.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Shaddy, R, Burch, M, Kantor, PF, et al. Sacubitril/Valsartan in pediatric heart failure (PANORAMA-HF): a randomized, multicenter, double-blind trial. Circulation 2024; 150: 17561766.10.1161/CIRCULATIONAHA.123.066605CrossRefGoogle ScholarPubMed
Castaldi, B, Cuppini, E, Fumanelli, J, et al. Chronic heart failure in children: state of the art and new perspectives. J Clin Med 2023; 12: 2611.10.3390/jcm12072611CrossRefGoogle ScholarPubMed
Newland, DM, Law, YM, Albers, EL, et al. Early clinical experience with dapagliflozin in children with heart failure. Pediatr Cardiol 2023; 44: 146152.10.1007/s00246-022-02983-0CrossRefGoogle ScholarPubMed
Grube, PM, Beckett, RD. Clinical studies of dapagliflozin in pediatric patients: a rapid review. Ann Pediatr Endocrinol Metab 2022; 27: 265272.10.6065/apem.2244166.083CrossRefGoogle ScholarPubMed
Hale, ZE, Prichett, L, Jandu, S, Ravekes, W. Sacubitril-valsartan vs ACE/ARB in pediatric heart failure: a retrospective cohort study. J Heart Lung Transplant 2024; 43: 826831.10.1016/j.healun.2024.01.012CrossRefGoogle ScholarPubMed
Apostolopoulou, SC, Vagenakis, GA, Tsoutsinos, A, Kakava, F, Rammos, S. Ambulatory intravenous inotropic support and or levosimendan in pediatric and congenital heart failure: safety, survival, improvement, or transplantation. Pediatr Cardiol 2018; 39: 13151322.10.1007/s00246-018-1897-5CrossRefGoogle ScholarPubMed
Dündar, MA, Yılmaz, M, Argun, M. Levosimendan: efficacy and safety in pediatric heart failure treatment. Rev Assoc Med Bras (1992) 2024; 70: e20240257.10.1590/1806-9282.20240257CrossRefGoogle ScholarPubMed
Schranz, D. Pharmacological heart failure therapy in children: focus on inotropic support. Handb Exp Pharmacol 2020; 261: 177192.10.1007/164_2019_267CrossRefGoogle ScholarPubMed
Séguéla, PE, Mauriat, P, Mouton, JB, et al. Single-centred experience with levosimendan in paediatric decompensated dilated cardiomyopathy. Arch Cardiovasc Dis 2015; 108: 347355.10.1016/j.acvd.2015.01.012CrossRefGoogle ScholarPubMed
McMurray, JJ, Packer, M, Desai, AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. PARADIGM-HF Investigators and Committees. N Engl J Med 2014; 371: 9931004.10.1056/NEJMoa1409077CrossRefGoogle Scholar
Lipshultz, SE, Sleeper, LA, Towbin, JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 2003; 348: 16471655.10.1056/NEJMoa021715CrossRefGoogle ScholarPubMed
Bonnet, D, Berger, F, Jokinen, E, Kantor, PF, Daubeney, PEF. Ivabradine in children with dilated cardiomyopathy and symptomatic chronic heart failure. J Am Coll Cardiol 2017; 70: 12621272.10.1016/j.jacc.2017.07.725CrossRefGoogle ScholarPubMed
Zhu, T, Ye, Z, Song, J, et al. Effect of extracellular matrix stiffness on efficacy of dapagliflozin for diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23: 273.10.1186/s12933-024-02369-xCrossRefGoogle ScholarPubMed
Dhillon, S. Dapagliflozin: a review in type 2 diabetes. Drugs 2019; 79: 11351146.10.1007/s40265-019-01148-3CrossRefGoogle ScholarPubMed
Kaze, AD, Zhuo, M, Kim, SC, Patorno, E, Paik, JM. Association of SGLT2 inhibitors with cardiovascular, kidney, and safety outcomes among patients with diabetic kidney disease: a meta-analysis. Cardiovasc Diabetol 2022; 21: 47.10.1186/s12933-022-01476-xCrossRefGoogle ScholarPubMed
McDonagh, TA, Metra, M, Adamo, M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42: 35993726.10.1093/eurheartj/ehab368CrossRefGoogle ScholarPubMed
Heerspink, HJL, Kosiborod, M, Inzucchi, SE, Cherney, DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 2018; 94: 2639.10.1016/j.kint.2017.12.027CrossRefGoogle ScholarPubMed
Tamargo, J. Sodium-glucose Cotransporter 2 inhibitors in heart failure: potential mechanisms of action, adverse effects and future developments. Eur Cardiol 2019; 14: 2332.10.15420/ecr.2018.34.2CrossRefGoogle ScholarPubMed
Verma, S, McMurray, JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia 2018; 61: 21082117.10.1007/s00125-018-4670-7CrossRefGoogle ScholarPubMed
Bertero, E, Prates Roma, L, Ameri, P, Maack, C. Cardiac effects of SGLT2 inhibitors: the sodium hypothesis. Cardiovasc Res 2018; 114: 1218.10.1093/cvr/cvx149CrossRefGoogle ScholarPubMed
Verma, S, Rawat, S, Ho, KL, et al. Empagliflozin increases cardiac energy production in diabetes: novel translational insights In to the heart failure benefits of SGLT2 inhibitors. JACC Basic Transl Sci 2018; 3: 575587.10.1016/j.jacbts.2018.07.006CrossRefGoogle Scholar
van Heerebeek, L, Hamdani, N, Handoko, ML, et al. Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008; 117: 4351.10.1161/CIRCULATIONAHA.107.728550CrossRefGoogle ScholarPubMed
Verma, S, Garg, A, Yan, AT, et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 2016; 39: e212e213.10.2337/dc16-1312CrossRefGoogle Scholar
Verma, S, Mazer, CD, Yan, AT, et al. Effect of empagliflozin on left ventricular mass in patients with Type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART cardioLink-6 randomized clinical trial. Circulation 2019; 140: 16931702.10.1161/CIRCULATIONAHA.119.042375CrossRefGoogle ScholarPubMed
Uthman, L, Li, X, Baartscheer, A, et al. Empagliflozin reduces oxidative stress through inhibition of the novel inflammation/NHE/ [Na( +)](c)/ROS-pathway in human endothelial cells. Biomed Pharmacother 2022; 146: 112515.10.1016/j.biopha.2021.112515CrossRefGoogle ScholarPubMed
Zuurbier, CJ, Abbate, A, Cabrera-Fuentes, HA, et al. Innate immunity as a target for acute cardioprotection. Cardiovasc Res 2019; 115: 11311142.10.1093/cvr/cvy304CrossRefGoogle ScholarPubMed
Park, SH, Belcastro, E, Hasan, H, et al. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins. Cardiovasc Diabetol 2021; 20: 65.10.1186/s12933-021-01252-3CrossRefGoogle ScholarPubMed
Dyck, JRB, Sossalla, S, Hamdani, N, et al. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J Mol Cell Cardiol 2022; 167: 1731.10.1016/j.yjmcc.2022.03.005CrossRefGoogle ScholarPubMed
Cherney, DZ, Perkins, BA, Soleymanlou, N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol 2014; 13: 28.10.1186/1475-2840-13-28CrossRefGoogle ScholarPubMed