Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T21:48:06.077Z Has data issue: false hasContentIssue false

Effect of anaemia on the diagnosis of rheumatic heart disease using World Heart Federation criteria

Published online by Cambridge University Press:  20 June 2019

Jennifer H. Klein
Affiliation:
Children’s National Health System, Division of Cardiology, Washington, DC, USA
Andrea Beaton
Affiliation:
Cincinnati Children’s Hospital, Division of Cardiology, Cincinnati, OH, USA
Alison Tompsett
Affiliation:
Children’s National Health System, Division of Cardiology, Washington, DC, USA
Justin Wiggs
Affiliation:
Children’s National Health System, Division of Cardiology, Washington, DC, USA
Craig Sable*
Affiliation:
Children’s National Health System, Division of Cardiology, Washington, DC, USA
*
Author for correspondence: Craig Sable, Children’s National Health System, Washington, DC, USA. Tel: 202-476-3845; Fax: 202-476-5700 E-mail: csable@childrensnational.org

Abstract

Background:

There is overlap between pathological mitral regurgitation seen in borderline rheumatic heart disease using World Heart Federation echocardiography criteria and physiologic regurgitation found in normal children. One possible contributing factor is higher rates of anaemia in endemic countries.

Objective:

To investigate the contribution of anaemia as a potential confounder in the diagnosis of rheumatic heart disease detected in echocardiographic screening.

Method/Design:

A novel Server 2012 data warehouse tool was used to incorporate haematology and echocardiography databases. The study included a convenience sample of patients from 5 to 18 years old without structural or functional heart disease that had a haemoglobin value within 1 month prior to an echocardiogram. Echocardiogram images were reviewed to determine presence or absence of World Heart Federation criteria for rheumatic heart disease. The rate of rheumatic heart disease among anaemic and non-anaemic children according to gender- and age-based norms groups was compared.

Results:

Of the 935 patients who met the study inclusion criteria, 406 were classified as anaemic. There was no difference in the rate of echocardiograms meeting criteria for borderline rheumatic heart disease in anaemic (2.0%, 95% CI 0.6–3.3%) and non-anaemic children (1.3%, 95% CI 0.3–2.3%). However, there was a statistically significant increase in rates of mitral regurgitation of unclear significance among anaemic versus non-anaemic patients (8.6 versus 3.6%; p = 0.0012).

Conclusion:

Anaemia does not increase the likelihood of meeting echocardiographic criteria for borderline rheumatic heart disease. Future studies should evaluate for the correlation between anaemia and mitral regurgitation in endemic settings.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Watkins, DA, Johnson, CO, Colquhoun, SM, et al. Global, regional, and National Burden of Rheumatic Heart Disease, 1990-2015. N Engl J Med 2017; 377: 713722.CrossRefGoogle ScholarPubMed
Zuhlke, L, Karthikeyan, G, Engel, ME, et al. Clinical outcomes in 3343 children and adults with rheumatic heart disease from 14 low- and middle-income countries: two-year follow-up of the Global Rheumatic Heart Disease Registry (the REMEDY Study). Circulation 2016; 134: 14561466.10.1161/CIRCULATIONAHA.116.024769CrossRefGoogle Scholar
Okello, E, Longenecker, CT, Beaton, A, Kamya, MR, Lwabi, P. Rheumatic heart disease in Uganda: predictors of morbidity and mortality one year after presentation. BMC Cardiovasc Disord 2017; 17: 20.CrossRefGoogle ScholarPubMed
Okello, E, Wanzhu, Z, Musoke, C, et al. Cardiovascular complications in newly diagnosed rheumatic heart disease patients at Mulago Hospital, Uganda. Cardiovasc J Afr 2013; 24: 8085.10.5830/CVJA-2013-004CrossRefGoogle ScholarPubMed
Zuhlke, L, Engel, ME, Karthikeyan, G, et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur Heart J 2015; 36: 11151122a.10.1093/eurheartj/ehu449CrossRefGoogle Scholar
Remenyi, B, Carapetis, J, Wyber, R, Taubert, K, Mayosi, BM, World Heart Federation. Position statement of the World Heart Federation on the prevention and control of rheumatic heart disease. Nat Rev Cardiol 2013; 10: 284292.10.1038/nrcardio.2013.34CrossRefGoogle ScholarPubMed
Carapetis, JR, Zuhlke, L, Taubert, K, Narula, J. Continued challenge of rheumatic heart disease: the gap of understanding or the gap of implementation? Global Heart 2013; 8: 185186.10.1016/j.gheart.2013.08.003CrossRefGoogle ScholarPubMed
Remenyi, B, Wilson, N, Steer, A, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease--an evidence-based guideline. Nat Rev Cardiol 2012; 9: 297309.10.1038/nrcardio.2012.7CrossRefGoogle ScholarPubMed
Zuhlke, LJ, Karthikeyan, G. Primary prevention for rheumatic fever: progress, obstacles, and opportunities. Global Heart 2013; 8: 221226.10.1016/j.gheart.2013.08.005CrossRefGoogle ScholarPubMed
Zuhlke, L, Engel, ME, Lemmer, CE, et al. The natural history of latent rheumatic heart disease in a 5 year follow-up study: a prospective observational study. BMC Cardiovasc Disord 2016; 16: 46.10.1186/s12872-016-0225-3CrossRefGoogle Scholar
Nascimento, BR, Nunes, MC, Lopes, EL, et al. Rheumatic heart disease echocardiographic screening: approaching practical and affordable solutions. Heart 2016; 102: 658664.10.1136/heartjnl-2015-308635CrossRefGoogle ScholarPubMed
Marijon, E, Ou, P, Celermajer, DS, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med 2007; 357: 470476.10.1056/NEJMoa065085CrossRefGoogle ScholarPubMed
Paar, JA, Berrios, NM, Rose, JD, et al. Prevalence of rheumatic heart disease in children and young adults in Nicaragua. Am J Cardiol 2010; 105: 18091814.CrossRefGoogle Scholar
Beaton, A, Okello, E, Lwabi, P, et al. Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren. Circulation 2012; 125: 31273132.CrossRefGoogle ScholarPubMed
Beaton, A, Lu, JC, Aliku, T, et al. The utility of handheld echocardiography for early rheumatic heart disease diagnosis: a field study. Eur Heart J Cardiovasc Imaging 2015; 16: 475482.CrossRefGoogle ScholarPubMed
Engel, ME, Haileamlak, A, Zuhlke, L, et al. Prevalence of rheumatic heart disease in 4720 asymptomatic scholars from South Africa and Ethiopia. Heart 2015; 101: 13891394.10.1136/heartjnl-2015-307444CrossRefGoogle ScholarPubMed
Weinberg, J, Beaton, A, Aliku, T, Lwabi, P, Sable, C. Prevalence of rheumatic heart disease in African school-aged population: extrapolation from echocardiography screening using the 2012 World Heart Federation Guidelines. Int J Cardiol 2016; 202: 238239.10.1016/j.ijcard.2015.08.128CrossRefGoogle ScholarPubMed
Ploutz, M, Lu, JC, Scheel, J, et al. Handheld echocardiographic screening for rheumatic heart disease by non-experts. Heart 2016; 102: 3539.CrossRefGoogle ScholarPubMed
Sims Sanyahumbi, A, Sable, CA, Beaton, A, et al. School and community screening Shows Malawi, Africa, to have a high prevalence of latent rheumatic heart disease. Congenit Heart Dis 2016; 11: 615621.10.1111/chd.12353CrossRefGoogle ScholarPubMed
Shung-King, M, Zuhlke, L, Engel, ME, Mayosi, BM. Asymptomatic rheumatic heart disease in South African schoolchildren: implications for addressing chronic health conditions through a school health service. S Afr Med J 2016; 106: 761762.CrossRefGoogle ScholarPubMed
Yadeta, D, Hailu, A, Haileamlak, A, et al. Prevalence of rheumatic heart disease among school children in Ethiopia: a multisite echocardiography-based screening. Int J Cardiol 2016; 221: 260263.10.1016/j.ijcard.2016.06.232CrossRefGoogle ScholarPubMed
Engelman, D, Wheaton, GR, Mataika, RL, et al. Screening-detected rheumatic heart disease can progress to severe disease. Heart Asia 2016; 8: 6773.CrossRefGoogle ScholarPubMed
Engelman, D, Kado, JH, Remenyi, B, et al. Screening for rheumatic heart disease: quality and agreement of focused cardiac ultrasound by briefly trained health workers. BMC Cardiovasc Disord 2016; 16: 30.10.1186/s12872-016-0205-7CrossRefGoogle ScholarPubMed
Beaton, A, Aliku, T, Dewyer, A, et al. Latent rheumatic heart disease: identifying the children at highest risk of unfavorable outcome. Circulation 2017; 136: 22332244.10.1161/CIRCULATIONAHA.117.029936CrossRefGoogle ScholarPubMed
Clark, BC, Krishnan, A, McCarter, R, et al. Using a low-risk population to estimate the specificity of the World Heart Federation criteria for the diagnosis of rheumatic heart disease. J Am Soc Echocardiogr 2016; 29: 253258.10.1016/j.echo.2015.11.013CrossRefGoogle Scholar
Roberts, K, Maguire, G, Brown, A, et al. Echocardiographic screening for rheumatic heart disease in high and low risk Australian children. Circulation 2014; 129: 19531961.10.1161/CIRCULATIONAHA.113.003495CrossRefGoogle ScholarPubMed
Kassebaum, NJ, Collaborators GBDA. The global burden of anemia. Hematol Oncol Clin North Am 2016; 30: 247308.10.1016/j.hoc.2015.11.002CrossRefGoogle ScholarPubMed
Kassebaum, NJ, Jasrasaria, R, Naghavi, M, et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood 2014; 123: 615624.CrossRefGoogle ScholarPubMed
Lonsdorfer, J, Bogui, P, Otayeck, A, et al. Cardiorespiratory adjustments in chronic sickle cell anemia. Bull Eur Physiopathol Respir 1983; 19: 339344.Google ScholarPubMed
Ahmed, S, Siddiqui, AK, Sadiq, A, et al. Echocardiographic abnormalities in sickle cell disease. Am J Hematol 2004; 76: 195198.10.1002/ajh.20118CrossRefGoogle ScholarPubMed
McLean, E, Cogswell, M, Egli, I, Wojdyla, D, de Benoist, B. Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 2009; 12: 444454.10.1017/S1368980008002401CrossRefGoogle ScholarPubMed
National High Blood Pressure Education Program Working Group on High Blood Pressure in C and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004; 114: 555576.10.1542/peds.114.2.S2.555CrossRefGoogle Scholar
Sills, RH. Useful normal laboratory values. In: Practical Algorithms in Pediatric Hematology and Oncology. Sills, RH; Series Editor: Hochberg, Z (eds.) Karger, New York, 2003: 106.CrossRefGoogle Scholar
Colquhoun, SM, Kado, JH, Remenyi, B, et al. Echocardiographic screening in a resource poor setting: borderline rheumatic heart disease could be a normal variant. Int J Cardiol 2014; 173: 284289.CrossRefGoogle Scholar
Godown, J, Beaton, A. Handheld echocardiography: a new tool for rheumatic heart disease screening in the developing world? Transl Pediatr 2015; 4: 252253.Google ScholarPubMed
Roberts, K, Colquhoun, S, Steer, A, Remenyi, B, Carapetis, J. Screening for rheumatic heart disease: current approaches and controversies. Nat Rev Cardiol 2013; 10: 4958.10.1038/nrcardio.2012.157CrossRefGoogle ScholarPubMed
Zuhlke, L, Mayosi, BM. Echocardiographic screening for subclinical rheumatic heart disease remains a research tool pending studies of impact on prognosis. Curr Cardiol Rep 2013; 15: 343.10.1007/s11886-012-0343-1CrossRefGoogle ScholarPubMed
Rahimi, K, Mohseni, H, Otto, CM, et al. Elevated blood pressure and risk of mitral regurgitation: a longitudinal cohort study of 5.5 million United Kingdom adults. PLoS Med 2017; 14: e1002404.10.1371/journal.pmed.1002404CrossRefGoogle ScholarPubMed
Carapetis, JR, Zuhlke, LJ. Global research priorities in rheumatic fever and rheumatic heart disease. Ann Pediatr Cardiol 2011; 4: 412.10.4103/0974-2069.79616CrossRefGoogle ScholarPubMed
Saxena, A, Zuhlke, L, Wilson, N. Echocardiographic screening for rheumatic heart disease: issues for the cardiology community. Global Heart 2013; 8: 197202.10.1016/j.gheart.2013.08.004CrossRefGoogle ScholarPubMed
Aliku, T, Sable, C, Scheel, A, et al. Targeted echocardiographic screening for latent rheumatic heart disease in Northern Uganda: evaluating familial risk following identification of an index case. PLoS Negl Trop Dis 2016; 10: e0004727.10.1371/journal.pntd.0004727CrossRefGoogle ScholarPubMed
Beaton, A, Aliku, T, Okello, E, et al. The utility of handheld echocardiography for early diagnosis of rheumatic heart disease. J Am Soc Echocardiogr 2014; 27: 4249.10.1016/j.echo.2013.09.013CrossRefGoogle ScholarPubMed
Beaton, A, Nascimento, BR, Diamantino, AC, et al. Efficacy of a standardized computer-based training curriculum to teach echocardiographic identification of rheumatic heart disease to nonexpert users. Am J Cardiol 2016; 117: 17831789.10.1016/j.amjcard.2016.03.006CrossRefGoogle ScholarPubMed
Beaton, A, Okello, E, Aliku, T, et al. Latent rheumatic heart disease: outcomes 2 years after echocardiographic detection. Pediatr Cardiol 2014; 35: 12591267.10.1007/s00246-014-0925-3CrossRefGoogle ScholarPubMed
Bhaya, M, Beniwal, R, Panwar, S, Panwar, RB. Two years of follow-up validates the echocardiographic criteria for the diagnosis and screening of rheumatic heart disease in asymptomatic populations. Echocardiography 2011; 28: 929933.10.1111/j.1540-8175.2011.01487.xCrossRefGoogle ScholarPubMed
Bradley-Hewitt, T, Dantin, A, Ploutz, M, et al. The impact of echocardiographic screening for rheumatic heart disease on patient quality of life. J Pediatr 2016; 175: 123129.10.1016/j.jpeds.2016.04.087CrossRefGoogle ScholarPubMed
Engelman, D, Kado, JH, Remenyi, B, et al. Focused cardiac ultrasound screening for rheumatic heart disease by briefly trained health workers: a study of diagnostic accuracy. Lancet Global Health 2016; 4: e386394.10.1016/S2214-109X(16)30065-1CrossRefGoogle ScholarPubMed
Engelman, D, Mataika, RL, Kado, JH, et al. Adherence to secondary antibiotic prophylaxis for patients with rheumatic heart disease diagnosed through screening in Fiji. Trop Med Int Health 2016; 21: 15831591.CrossRefGoogle ScholarPubMed
Engelman, D, Okello, E, Beaton, A, et al. Evaluation of computer-based training for health workers in echocardiography for rheumatic heart disease. Global Heart 2017; 12: 1723.CrossRefGoogle Scholar
Godown, J, Lu, JC, Beaton, A, et al. Handheld echocardiography versus auscultation for detection of rheumatic heart disease. Pediatrics 2015; 135: e939944.CrossRefGoogle ScholarPubMed
Huang, JH, Favazza, M, Legg, A, et al. Echocardiographic screening of rheumatic heart disease in American Samoa. Pediatr Cardiol 2018; 39: 3844.CrossRefGoogle ScholarPubMed
Lopes, EL, Beaton, AZ, Nascimento, BR, et al. Telehealth solutions to enable global collaboration in rheumatic heart disease screening. J Telemed Telecare 2018; 24: 101109.10.1177/1357633X16677902CrossRefGoogle ScholarPubMed
Lu, JC, Sable, C, Ensing, GJ, et al. Simplified rheumatic heart disease screening criteria for handheld echocardiography. J Am Soc Echocardiogr 2015; 28: 463469.CrossRefGoogle ScholarPubMed
Mirabel, M, Bacquelin, R, Tafflet, M, et al. Screening for rheumatic heart disease: evaluation of a focused cardiac ultrasound approach. Circ Cardiovasc Imaging 2015; 8.CrossRefGoogle ScholarPubMed
Nascimento, BR, Beaton, AZ, Nunes, MC, et al. Echocardiographic prevalence of rheumatic heart disease in Brazilian schoolchildren: data from the PROVAR study. Int J Cardiol 2016; 219: 439445.10.1016/j.ijcard.2016.06.088CrossRefGoogle ScholarPubMed
Ploutz, M, Aliku, T, Bradley-Hewitt, T, et al. Child and teacher acceptability of school-based echocardiographic screening for rheumatic heart disease in Uganda. Cardiol Young 2017; 27: 8289.10.1017/S1047951116000159CrossRefGoogle ScholarPubMed
Saxena, A. Task shifting rheumatic heart disease screening to non-experts. Lancet Global Health 2016; 4: e349350.10.1016/S2214-109X(16)30077-8CrossRefGoogle ScholarPubMed
Sims Sanyahumbi, A, Sable, CA, Karlsten, M, et al. Task shifting to clinical officer-led echocardiography screening for detecting rheumatic heart disease in Malawi, Africa. Cardiol Young 2017; 27: 11331139.10.1017/S1047951116002511CrossRefGoogle ScholarPubMed
Zachariah, JP, Samnaliev, M. Echo-based screening of rheumatic heart disease in children: a cost-effectiveness Markov model. J Med Econ 2015; 18: 410419.10.3111/13696998.2015.1006366CrossRefGoogle ScholarPubMed
Zuhlke, LJ, Engel, ME, Nkepu, S, Mayosi, BM.Evaluation of a focussed protocol for hand-held echocardiography and computer-assisted auscultation in detecting latent rheumatic heart disease in scholars. Cardiol Young 2016; 26: 10971106.CrossRefGoogle ScholarPubMed