Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T10:49:39.087Z Has data issue: false hasContentIssue false

Ductus arteriosus morphology in duct-dependent pulmonary circulation: CT classification and pattern in different ventricular morphology

Published online by Cambridge University Press:  18 January 2023

Haifa Abdul Latiff*
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Anu Ratha Gopal
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Zul Febrianti Hidayat
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Maruti Haranal
Affiliation:
Department of Cardiac Surgery, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Boekren K. Borhanuddin
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Mazeni Alwi
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
Hasri Samion
Affiliation:
PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia
*
Author for correspondence: Haifa Abdul Latiff, MBBS, M Med, Senior Consultant Pediatric Cardiologist, PCHC Department, Institut Jantung Negara, 145, Jalan Tun Razak, Kuala Lumpur, 50400, Malaysia. Tel: +60 12 283 5963. E-mail: haifa@ijn.com.my

Abstract

Background:

The objective was to study the ductus arteriosus morphology in duct-dependent pulmonary circulation and its pattern in different ventricle morphology using CT angiography.

Method:

From January 2013 to December 2015, patients aged 6 months and below with duct-dependent pulmonary circulation underwent CT angiography to delineate the ductus arteriosus origin, tortuosity, site of insertion, and pulmonary artery anatomy. The ductus arteriosus were classified into type I, IIa, IIb, and III based on its site of origin, either from descending aorta, distal arch, proximal arch, or subclavian artery, respectively.

Results:

A total of 114 patients and 116 ductus arteriosus (two had bilateral ductus arteriosus) were analysed. Type I, IIa, IIb, and III ductus arteriosus were seen in 13 (11.2 %), 71 (61.2%), 21 (18.1%), and 11 (9.5%), respectively. Tortuous ductus arteriosus was found in 38 (32.7%), which was commonly seen in single ventricular lesions. Ipsilateral and bilateral branch pulmonary artery stenosis was seen in 68 (59.6%) and 6 (5.3%) patients, respectively. The majority of patients with pulmonary atresia intact ventricular septum had type I (54.4%) and non-tortuous ductus arteriosus, while those with single and biventricular lesions had type II ductus arteriosus (84.9% and 89.7%, respectively). Type III ductus arteriosus was more common in biventricular lesions (77.8%).

Conclusions:

Ductus arteriosus in duct-dependent pulmonary circulation has a diverse morphology with a distinct origin and tortuosity pattern in different types of ventricular morphology. CT may serve as an important tool in case selection and pre-procedural planning for ductal stenting.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Glatz, AC, Petit, CJ, Goldstein, BH, et al. Comparison between patent ductus arteriosus stent and modified Blalock-Taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow: insights from the congenital catheterization research collaborative. Circulation 2018; 137: 589601.10.1161/CIRCULATIONAHA.117.029987CrossRefGoogle ScholarPubMed
Bentham, JR, Zava, NK, Harrison, WJ, et al. Duct stenting versus modified Blalock-Taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a Multicenter National Study. Circulation 2018; 137: 581588.10.1161/CIRCULATIONAHA.117.028972CrossRefGoogle Scholar
Alwi, M. Stenting ductus arteriosus: case selection, technique and possible complications. Ann Pediatr Cardiol 2008; 1: 3845.10.4103/0974-2069.41054CrossRefGoogle ScholarPubMed
Boshoff, DE, Michel-Behnke, I, Schranz, D, Gewillig, M. Stenting the neonatal arterial duct. Expert Rec. Cardiocasc. Ther. 2014; 5: 893901.10.1586/14779072.5.5.893CrossRefGoogle Scholar
Hinton, R, Michelfelder, E. Significance of reverse orientation of the ductus arteriosus in neonates with pulmonary outflow tract obstruction for early intervention. Am J Cardiol 2006; 97: 716719.10.1016/j.amjcard.2005.09.121CrossRefGoogle ScholarPubMed
Abrams, SE, Kevin, P. Walsh arterial duct morphology with reference to angioplasty and stenting. Int J Cardiol 1993; 40: 2733.10.1016/0167-5273(93)90227-8CrossRefGoogle ScholarPubMed
Santos, MA, Moll, JN, Drumond, C, Araujo, WB, Romao, N, Reis, NB. Development of the ductus arteriosus in right ventricular outflow tract obstruction. Circulation 1980; 62: 818822.10.1161/01.CIR.62.4.818CrossRefGoogle ScholarPubMed
Elzenga, NJ, Gittenberger-de Groot, AC. The ductus arteriosus and stenoses.of the pulmonary arteries in pulmonary atresia. Int J Cardiol 1986; 11: ll: 195208.10.1016/0167-5273(86)90179-8CrossRefGoogle ScholarPubMed
Gherardi, GG, Iball, GR, Darby, MJ, Thomson, JDR. Cardiac computed tomography and conventional angiography in the diagnosis of congenital cardiac disease in children: recent trends and radiation doses. Cardiol Young 2011; 21: 616622.10.1017/S1047951111000485CrossRefGoogle ScholarPubMed
Goo, HW. CT radiation dose optimization and estimation: an update for radiologists. Korean J Radiol 2012; 13: 111.10.3348/kjr.2012.13.1.1CrossRefGoogle ScholarPubMed
Rehman, R, Chaudhari, M, Latiff, HA, Stumper, O, Alwi, M. Airway compression: a rare but serious complication following stenting of the patent ductus arteriosus. Adv Interv Cardiol 2021; 4: 412415.Google Scholar
Udink ten Cate, FEA, Sreeram, N, Hamza, H, Agha, H, Rosenthal, E, Qureshi, SA. Stenting the arterial duct in neonates and infants with congenital heart disease and duct-dependent pulmonary blood flow: a multicenter experience of an evolving therapy over 18 years. Catheter Cardiovasc Interv 2013; 82: E233E243.10.1002/ccd.24878CrossRefGoogle ScholarPubMed
Formigari, R, Vairo, U, dezorzi, A, Santoro, G, Marino, B. Prevalence of bilateral patent ductus arteriosus in patients with pulmonic valve atresia and asplenia syndrome. Am J Cardiol 1992; 70: 12201220.10.1016/0002-9149(92)90063-5CrossRefGoogle ScholarPubMed
Freedom, RM, Pelech, A, Jeffrey, S, et al. Bilateral ductus arteriosus (or remnant). an analysis of 27 patients. Am J Cardiol 1984; 53: 884891.10.1016/0002-9149(84)90518-6CrossRefGoogle ScholarPubMed
Bah, MNM, Sapian, MH, Alias, EY. Birth prevalence and late diagnosis of critical congenital heart disease: a population-based study from a middle-income country. Ann Pediatr Cardiol 2020; 3: 320326.Google Scholar
Qureshi, AM, Goldstein, BH, Glatz, AC, et al. Classification scheme for ductal morphology in cyanotic patients with ductal dependent pulmonary blood flow and association with outcomes of patent ductus arteriosus stenting. Catheter Cardiovac Interven 2018; 93: 993–943.Google Scholar
Alwi, M. Stenting the patent ductus arteriosus in duct-dependent pulmonary circulation: techniques, complications and follow-up issues Future Cardiol 2012; 8: 237250.10.2217/fca.12.4CrossRefGoogle ScholarPubMed
Rehman, R, Marhisham, MC, Alwi, M. Stenting the complex patent ductus arteriosus in tetralogy of Fallot with pulmonary atresia: challenges and outcomes. Future Cardiol 2018; 14: 5573.10.2217/fca-2017-0053CrossRefGoogle ScholarPubMed
Bauser-Heaton, H, Qureshi, AM, Goldstein, BH, et al. Use of carotid and axillary artery approach for stenting the patent ductus arteriosus in infants with ductal-dependent pulmonary blood flow: a multicenter study from the congenital catheterization research collaborative. Catheter Cardiovasc Interv 2020; 95: 726733.10.1002/ccd.28631CrossRefGoogle ScholarPubMed
Santoro, G, Gaio, G, Giugno, L, et al. Ten-years, single-center experience with arterial duct stenting in duct-dependent pulmonary circulation: early results, learning-curve changes, and mid-term outcome. Catheter Cardiovasc Interv. 2015; 86: 249257.10.1002/ccd.25949CrossRefGoogle ScholarPubMed
Haranal, M, Mood, MC, Leong, MC, et al. Impact of ductal stenting on pulmonary artery reconstruction in patients with duct-dependent congenital heart disease - an institutional experience. Interact CardioVasc Thorac Surg 2020; 31: 221227.10.1093/icvts/ivaa069CrossRefGoogle ScholarPubMed
Giordano, M, Santoro, G, Agnoletti, G. Interventional cardiac catheterization in neonatal age: results in a multicentre Italian experience. Int J Cardiol 2020; 314: 3642.10.1016/j.ijcard.2020.04.013CrossRefGoogle Scholar
van der Stelt, F, Siegerink, SN, Krings, GJ, Molenschot, MMC, Breur, JMPJ. Three-dimensional rotational angiography in pediatric patients with congenital heart disease: a literature review. Pediatr Cardiol 2019; 40: 257264.10.1007/s00246-019-02052-zCrossRefGoogle ScholarPubMed
Markowitz, RI, Fahey, JT, Hellenbrand, WE, Kopf, GS, Rothstein, P. Bronchial compression by PDA associated with PA. Am J Roentgenol 1985; 144: 535540 2004.10.2214/ajr.144.3.535CrossRefGoogle Scholar
Chamberlain, RC, Ezekian, JE, Sturgeon, GM, Barker, PCA, Hill, KD, Fleming, GA. Preprocedural three-dimensional planning aids in transcatheter ductal stent placement: a single-center experience. Catheter Cardiovasc Interv 2019; 95: 18.Google ScholarPubMed
Alwi, M, Choo, KK, Latiff, HA, Kandavello, G, Samion, H, Mulyadi, MD. Initial results and medium term follow up of stent implantation of patent ductus arteriosus in duct-dependent pulmonary circulation. J Am Coll Cardiol 2004; 44: 438445.10.1016/j.jacc.2004.03.066CrossRefGoogle ScholarPubMed
Schindler, P, Kehl, HG, Wildgruber, M, Heindel, W, Schülke, C. Cardiac CT in the preoperative diagnostics of neonates with congenital heart disease: radiation dose optimization by omitting test bolus or bolus tracking. Acad Radiol 2020; 27: e102e108.10.1016/j.acra.2019.07.019CrossRefGoogle ScholarPubMed
Dodge-Khatami, J, Adebo, DA. Evaluation of complex congenital heart disease in infants using low dose cardiac computed tomography. Int J Cardiovasc Imaging. 2021; 37: 14551460.10.1007/s10554-020-02118-7CrossRefGoogle ScholarPubMed
Schicchi, N, Fogante, M, Esposto Pirani, P, et al. Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art. Radiol Med 2019; 124: 12381252.10.1007/s11547-019-01097-7CrossRefGoogle Scholar