Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T13:20:05.282Z Has data issue: false hasContentIssue false

Autism spectrum disorder and congenital heart disease: a narrative review of the literature

Published online by Cambridge University Press:  26 May 2023

Kritika Nayar*
Affiliation:
Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Department of Psychiatry & Behavioral Sciences, Autism Assessment, Research, & Treatment Services, Rush University Medical Center, Chicago, IL, USA
Lindsay Katz
Affiliation:
Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA Department of Pediatric Psychology and Neuropsychology, Nationwide Children’s Hospital, Columbus, OH, USA
Kimberley Heinrich
Affiliation:
Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
Natalie Berger
Affiliation:
Department of Psychiatry & Behavioral Sciences, Autism Assessment, Research, & Treatment Services, Rush University Medical Center, Chicago, IL, USA
*
Corresponding author: Dr. K. Nayar, Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. E-mail: kritikanayarphd@gmail.com

Abstract

Individuals born with congenital heart disease (CHD) are at an increased risk of developing neurodevelopmental disorders. Despite this, studies are limited in their investigation of autism spectrum disorder in the context of CHD. This review provides an overview of the literature examining autism spectrum disorder in CHD and discusses strengths, limitations, and future directions. Recent efforts have been made to extrapolate the association between CHD and symptoms of autism. Findings suggest that the core features of autism spectrum disorder are also implicated in children with CHD, namely social-cognitive weaknesses, pragmatic language differences, and social problems. Compared to norm-referenced samples, separate studies have identified divergent and overlapping neuropsychological profiles among both patient groups, yet there are no studies directly comparing the two groups. There is emerging evidence of prevalence rates of autism diagnosis in CHD showing an increased odds of having autism spectrum disorder among children with CHD relative to the general population or matched controls. There also appears to be genetic links to this overlap, with several genes identified as being tied to both CHD and autism. Together, research points to potentially shared underlying mechanisms contributing to the pathophysiology of neurodevelopmental, neuropsychological, and clinical traits in CHD and autism spectrum disorder. Future investigation delineating profiles across these patient populations can fill a significant gap in the literature and aid in treatment approaches to improve clinical outcomes.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Huisenga, D, La Bastide-Van Gemert, S, Van Bergen, A, Sweeney, J, Hadders-Algra, M. Developmental outcomes after early surgery for complex congenital heart disease: a systematic review and meta-analysis. Dev Med Child Neurol 2021; 63: 2946. DOI: 10.1111/dmcn.14512.CrossRefGoogle ScholarPubMed
Oster, ME, Lee, KA, Honein, MA, Riehle-Colarusso, T, Shin, M, Correa, A. Temporal trends in survival among infants with critical congenital heart defects. Pediatrics 2013; 131: E1502E1508. DOI: 10.1542/peds.2012-3435.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, duPlessis, AJ, et al. Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: the boston circulatory arrest trial. J Thorac Cardiovasc Surg 2003; 126: 13851396. DOI: 10.1016/S0022-5223(03)00711-6.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, Kuban, KCK, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999; 100: 526532. DOI: 10.1161/01.Cir.100.5.526.CrossRefGoogle ScholarPubMed
Hovels-Gurich, HH, Seghaye, MC, Schnitker, R, et al. Long-term neurodevelopmental outcomes in school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg Sep 2002; 124: 448458. DOI: 10.1067/mtc.2002.122307.CrossRefGoogle ScholarPubMed
Verrall, CE, Blue, GM, Loughran-Fowlds, A, et al. 'Big issues' in neurodevelopment for children and adults with congenital heart disease. Open Heart 2019; 6: e000998. DOI: 10.1136/openhrt-2018-000998.CrossRefGoogle ScholarPubMed
Kasmi, L, Bonnet, D, Montreuil, M, et al. Neuropsychological and psychiatric outcomes in Dextro-transposition of the great arteries across the lifespan: a state-of-the-art review. Front Pediatr 2017; 5doi: 10.3389/fped.2017.00059.Google Scholar
Pfitzer, C, Helm, PC, Rosenthal, LM, et al. Educational level and employment status in adults with congenital heart disease. Cardiol Young 2018; 28: 3238. DOI: 10.1017/S104795111700138x.CrossRefGoogle ScholarPubMed
Wilson, WM, Smith-Parrish, M, Marino, BS, Kovacs, AH. Neurodevelopmental and psychosocial outcomes across the congenital heart disease lifespan. Prog Pediatr Cardiol 2015; 39: 113118. DOI: 10.1016/j.ppedcard.2015.10.011.CrossRefGoogle Scholar
Pierpont, ME, Brueckner, M, Chung, WK, et al. Genetic basis for congenital heart disease: revisited: a scientific statement from the American heart association. Circulation 2018; 138: e653e711. DOI: 10.1161/CIR.0000000000000606.CrossRefGoogle ScholarPubMed
Ko, JM. Genetic syndromes associated with congenital heart disease. Korean Circ J 2015; 45: 357361. DOI: 10.4070/kcj.2015.45.5.357.CrossRefGoogle ScholarPubMed
Capone, G, Goyal, P, Ares, W, Lannigan, E. Neurobehavioral disorders in children, adolescents, and young adults with down syndrome. Am J Med Genet C Semin Med Genet 2006; 142C: 158172. DOI: 10.1002/ajmg.c.30097.CrossRefGoogle ScholarPubMed
Kates, WR, Antshel, KM, Fremont, WP, et al. Comparing phenotypes in patients with idiopathic autism to patients with velocardiofacial syndrome (22q11 DS) with and without autism. Am J Med Genet A 2007; 143A: 26422650. DOI: 10.1002/ajmg.a.32012.CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American heart association. Circulation 2012; 126: 11431172. DOI: 10.1161/CIR.0b013e318265ee8a.CrossRefGoogle ScholarPubMed
Kolevzon, A, Gross, R, Reichenberg, A. Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med 2007; 161: 326333. DOI: 10.1001/archpedi.161.4.326.CrossRefGoogle ScholarPubMed
Strasser, L, Downes, M, Kung, J, Cross, JH, De Haan, M. Prevalence and risk factors for autism spectrum disorder in epilepsy: a systematic review and meta-analysis. Dev Med Child Neurol 2018; 60: 1929. DOI: 10.1111/dmcn.13598.CrossRefGoogle ScholarPubMed
Cassidy, AR, White, MT, DeMaso, DR, Newburger, JW, Bellinger, DC. Executive function in children and adolescents with critical cyanotic congenital heart disease. J Int Neuropsychol Soc 2015; 21: 3449. DOI: 10.1017/S1355617714001027.CrossRefGoogle ScholarPubMed
Heinrichs, AKM, Holschen, A, Krings, T, et al. Neurologic and psycho-intellectual outcome related to structural brain imaging in adolescents and young adults after neonatal arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg 2014; 148: 21902199. DOI: 10.1016/j.jtcvs.2013.10.087.CrossRefGoogle Scholar
Murphy, LK, Compas, BE, Reeslund, KL, et al. Cognitive and attentional functioning in adolescents and young adults with tetralogy of fallot and d-transposition of the great arteries. Child Neuropsychol 2017; 23: 99110. DOI: 10.1080/09297049.2015.1087488.CrossRefGoogle Scholar
Schaefer, C, von Rhein, M, Knirsch, W, et al. Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease. Dev Med Child Neurol 2013; 55: 11431149. DOI: 10.1111/dmcn.12242.CrossRefGoogle ScholarPubMed
Mebius, MJ, Kooi, EMW, Hard, CM, Bos, AF. Brain injury and neurodevelopmental outcome in congenital heart disease: a systematic review. Pediatrics 2017; 140: e20164055. DOI: 10.1542/peds.2016-4055.CrossRefGoogle ScholarPubMed
Tan, A, Semmel, ES, Wolf, I, Hammett, B, Ilardi, D. Implementing standard screening for autism spectrum disorder in CHD. Cardiol Young 2020; 30: 11181125. DOI: 10.1017/S1047951120001626.CrossRefGoogle ScholarPubMed
Andropoulos, DB, Ahmad, HB, Haq, T, et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: a retrospective cohort study. Pediatr Anesth 2014; 24: 266274. DOI: 10.1111/pan.12350.CrossRefGoogle ScholarPubMed
Beca, J, Gunn, JK, Coleman, L, et al. New white matter brain injury after infant heart surgery is associated with diagnostic group and the use of circulatory arrest. Circulation 2013; 5: 971979. DOI: 10.1161/Circulationaha.112.001089.CrossRefGoogle Scholar
Claessens, NHP, Algra, SO, Ouwehand, TL, et al. Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease. Dev Med Child Neurol 2018; 60: 10521058. DOI: 10.1111/dmcn.13747.CrossRefGoogle ScholarPubMed
Hinton, RB, Andelfinger, G, Sekar, P, et al. Prenatal head growth and white matter injury in hypoplastic left heart syndrome. Pediatr Res 2008; 64: 364369. DOI: 10.1203/PDR.0b013e3181827bf4.CrossRefGoogle ScholarPubMed
Lauridsen, MH, Uldbjerg, N, Henriksen, TB, et al. Cerebral oxygenation measurements by magnetic resonance imaging in fetuses with and without heart defects. Circ-Cardiovasc Imag 2017; 10: e006459. DOI: 10.1161/CIRCIMAGING.117.006459.CrossRefGoogle ScholarPubMed
Sun, LQ, Macgowan, CK, Sled, JG, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 13131323. DOI: 10.1161/Circulationaha.114.013051.CrossRefGoogle ScholarPubMed
Guo, T, Chau, V, Peyvandi, S, et al. White matter injury in term neonates with congenital heart diseases: topology & comparison with preterm newborns. Neuroimage 2019; 15: 742749. DOI: 10.1016/j.neuroimage.2018.06.004.CrossRefGoogle Scholar
Licht, DJ, Shera, DM, Clancy, RR, et al. Brain maturation is delayed in infants with complex congenital heart defects. J Thorac Cardiovasc Surg 2009; 137: 529537. DOI: 10.1016/j.jtcvs.2008.10.025.CrossRefGoogle ScholarPubMed
Nattel, SN, Adrianzen, L, Kessler, EC, et al. Congenital heart disease and neurodevelopment: clinical manifestations, genetics, mechanisms, and implications. Can J Cardiol 2017; 33: 15431555. DOI: 10.1016/j.cjca.2017.09.020.CrossRefGoogle ScholarPubMed
Sadhwani, A, Wypij, D, Rofeberg, V, et al. Fetal brain volume predicts neurodevelopment in congenital heart disease. Circulation 2022; 145: 11081119. DOI: 10.1161/CIRCULATIONAHA.121.056305.CrossRefGoogle ScholarPubMed
Brossard-Racine, M, du Plessis, AJ, Vezina, G, et al. Prevalence and spectrum of in utero structural brain Abnormalities in fetuses with complex congenital heart disease. Am J Neuroradiol 2014; 35: 15931599. DOI: 10.3174/ajnr.A3903.CrossRefGoogle ScholarPubMed
Khalil, A, Bennet, S, Thilaganathan, B, Paladini, D, Griffiths, P, Carvalho, JS. Prevalence of prenatal brain abnormalities in fetuses with congenital heart disease: a systematic review. Ultrasound Obstet Gynecol 2016; 48: 296307. DOI: 10.1002/uog.15932.CrossRefGoogle ScholarPubMed
Co-Vu, J, Lopez-Colon, D, Vyas, HV, Weiner, N, DeGroff, C. Maternal hyperoxygenation: a potential therapy for congenital heart disease in the fetuses? A systematic review of the current literature. Echocardiogr-J Card 2017; 34: 18221833. DOI: 10.1111/echo.13722.CrossRefGoogle ScholarPubMed
McQuillen, PS, Goff, DA, Licht, DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol 2010; 29: 7985. DOI: 10.1016/j.ppedcard.2010.06.011.CrossRefGoogle ScholarPubMed
Sanchez, O, Ruiz-Romero, A, Dominguez, C, et al. Brain angiogenic gene expression in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2018; 52: 734738. DOI: 10.1002/uog.18977.CrossRefGoogle ScholarPubMed
Verrall, CE, Walker, K, Loughran-Fowlds, A, et al. Contemporary incidence of stroke (focal infarct and/or haemorrhage) determined by neuroimaging and neurodevelopmental disability at 12 months of age in neonates undergoing cardiac surgery utilizing cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 2018; 26: 644650. DOI: 10.1093/icvts/ivx375.CrossRefGoogle ScholarPubMed
Mahle, WT, Tavani, F, Zimmerman, RA, et al. An MRI study of neurological injury before and after congenital heart surgery. Circulation 2002; 106: I109I114. DOI: 10.1161/01.cir.0000032908.33237.b1.CrossRefGoogle ScholarPubMed
Wray, J, Sensky, T. Congenital heart disease and cardiac surgery in childhood: effects on cognitive function and academic ability. Heart 2001; 85: 687691. DOI: 10.1136/heart.85.6.687.CrossRefGoogle ScholarPubMed
Wypij, D, Newburger, JW, Rappaport, LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the boston circulatory arrest trial. J Thorac Cardiovasc Surg 2003; 126: 13971403. DOI: 10.1016/S0022-5223(03)00940-1.CrossRefGoogle ScholarPubMed
Brewster, RC, King, TZ, Burns, TG, Drossner, DM, Mahle, WT. White matter integrity dissociates verbal memory and auditory attention span in emerging adults with congenital heart disease. J Int Neuropsychol Soc 2015; 21: 2233. DOI: 10.1017/S135561771400109x.CrossRefGoogle ScholarPubMed
Kinga, TZ, Smith, KM, Burns. TG, etal, fMRI investigation of working memory in adolescents with surgically treated congenital heart disease. Appl Neuropsych-Chil 2017; 6: 721. DOI: 10.1080/21622965.2015.1065185.CrossRefGoogle Scholar
Rollins, CK, Asaro, LA, Akhondi-Asl, A, et al. White matter volume predicts language development in congenital heart disease. J Pediatr 2017; 181: 4248. DOI: 10.1016/j.jpeds.2016.09.070.CrossRefGoogle ScholarPubMed
Semmel, ES, Dotson, VM, Burns, TG, Mahle, WT, King, TZ. Posterior cerebellar volume and executive function in young adults with congenital heart disease. J Int Neuropsychol Soc 2018; 24: 939948. DOI: 10.1017/S1355617718000310.CrossRefGoogle ScholarPubMed
Karsdorp, PA, Everaerd, W, Kindt, M, Mulder, BJ. Psychological and cognitive functioning in children and adolescents with congenital heart disease: a meta-analysis. J Pediatr Psychol 2007; 32: 527541. DOI: 10.1093/jpepsy/jsl047.CrossRefGoogle ScholarPubMed
Gaynor, JW, Ittenbach, RF, Gerdes, M, et al. Neurodevelopmental outcomes in preschool survivors of the Fontan procedure. J Thorac Cardiovasc Surg 2014; 147: 12761282. DOI: 10.1016/j.jtcvs.2013.12.019.CrossRefGoogle ScholarPubMed
Gaynor, JW, Stopp, C, Wypij, D, et al. Neurodevelopmental outcomes after cardiac surgery in infancy. Pediatrics 2015; 135: 816825. DOI: 10.1542/peds.2014-3825.CrossRefGoogle ScholarPubMed
Hansen, E, Poole, TA, Nguyen, V, et al. Prevalence of ADHD symptoms in patients with congenital heart disease. Pediatr Int 2012; 54: 838843. DOI: 10.1111/j.1442-200X.2012.03711.x.CrossRefGoogle ScholarPubMed
Walker, K, Badawi, N, Halliday, R, et al. Early developmental outcomes following major noncardiac and cardiac surgery in term infants: a population-based study. J Pediatr 2012; 161: 748752 e1. DOI: 10.1016/j.jpeds.2012.03.044.CrossRefGoogle ScholarPubMed
Walker, K, Loughran-Fowlds, A, Halliday, R, et al. Developmental outcomes at 3 years of age following major non-cardiac and cardiac surgery in term infants: a population-based study. J Paediatr Child Health 2015; 51: 12211225. DOI: 10.1111/jpc.12943.CrossRefGoogle ScholarPubMed
Cassidy, AR, Ilardi, D, Bowen, SR, et al. Congenital heart disease: a primer for the pediatric neuropsychologist. Child Neuropsychol 2018; 24: 859902. DOI: 10.1080/09297049.2017.1373758.CrossRefGoogle ScholarPubMed
Mahle, WT. Neurologic and cognitive outcomes in children with congenital heart disease. Curr Opin Pediatr 2001; 13: 482486. DOI: 10.1097/00008480-200110000-00016.CrossRefGoogle ScholarPubMed
Mahle, WT, Wernovsky, G. Long-term developmental outcome of children with complex congenital heart disease. Clin Perinatol 2001; 28: 235247. DOI: 10.1016/s0095-5108(05)70077-4.CrossRefGoogle Scholar
American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th edn. American Psychiatric Association, 2013, 947.Google Scholar
Maenner, MJ, Warren, Z, Williams, AR, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill Summ 2023; 72(No. SS-2): 114. DOI: 10.15585/mmwr.ss7202a1.CrossRefGoogle ScholarPubMed
La Malfa, G, Lassi, S, Bertelli, M, Salvini, R, Placidi, GF. Autism and intellectual disability: a study of prevalence on a sample of the italian population. J Intellect Disabil Res 2004; 48: 262267. DOI: 10.1111/j.1365-2788.2003.00567.x.CrossRefGoogle ScholarPubMed
Lee, DO, Ousley, OY. Attention-deficit hyperactivity disorder symptoms in a clinic sample of children and adolescents with pervasive developmental disorders. J Child Adolesc Psychopharmacol 2006; 16: 737746. DOI: 10.1089/cap.2006.16.737.CrossRefGoogle Scholar
Leyfer, OT, Folstein, SE, Bacalman, S, et al. Comorbid psychiatric disorders in children with autism: interview development and rates of disorders. J Autism Dev Disord 2006; 36: 849861. DOI: 10.1007/s10803-006-0123-0.CrossRefGoogle ScholarPubMed
Chambers, WJ, Puig-Antich, J, Hirsch, M, et al. The assessment of affective disorders in children and adolescents by semistructured interview: test-retest reliability of the schedule for affective disorders and schizophrenia for school-age children, present episode version. Arch Gen Psychiatry 1985; 42: 696702.CrossRefGoogle ScholarPubMed
Kaufman, J, Birmaher, B, Brent, D, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 1997; 36: 980988.CrossRefGoogle ScholarPubMed
Ambrosini, PJ. Historical development and present status of the schedule for affective disorders and schizophrenia for school-age children (K-SADS). J Am Acad Child Adolesc Psychiatry 2000; 39: 4958.CrossRefGoogle ScholarPubMed
Juneja, M, Gupta, S, Thakral, A. Prevalence of unrecognized autism spectrum disorders in epilepsy: a clinic-based study. J Pediatr Neurosci 2018; 13: 308312. DOI: 10.4103/jpn. Jpn_136_17.Google ScholarPubMed
Tuchman, R, Cuccaro, M. Epilepsy and autism: neurodevelopmental perspective. Curr Neurol Neurosci Rep 2011; 11: 428434. DOI: 10.1007/s11910-011-0195-x.CrossRefGoogle ScholarPubMed
Hara, H. Autism and epilepsy: a retrospective follow-up study. Brain Dev 2007; 29: 486490. DOI: 10.1016/j.braindev.2006.12.012.CrossRefGoogle ScholarPubMed
Lukmanji, S, Manji, SA, Kadhim, S, et al. The co-occurrence of epilepsy and autism: a systematic review. Epilepsy Behav 2019; 98: 238248. DOI: 10.1016/j.yebeh.2019.07.037.CrossRefGoogle ScholarPubMed
Levisohn, PM. The autism-epilepsy connection. Epilepsia 2007; 48: 3335. DOI: 10.1111/j.1528-1167.2007.01399.x.CrossRefGoogle ScholarPubMed
Ewen, JB, Marvin, AR, Law, K, Lipkin, PH. Epilepsy and autism severity: a study of 6,975 children. Autism Res 2019; 12: 12511259. DOI: 10.1002/aur.2132.CrossRefGoogle ScholarPubMed
El Achkar, CM, Spence, SJ. Clinical characteristics of children and young adults with co-occurring autism spectrum disorder and epilepsy. Epilepsy Behav 2015; 47: 183190. DOI: 10.1016/j.yebeh.2014.12.022.CrossRefGoogle Scholar
Timonen-Soivio, L, Vanhala, R, Malm, H, et al. The association between congenital anomalies and autism spectrum disorders in a Finnish national birth cohort. Dev Med Child Neurol 2015; 57: 7580. DOI: 10.1111/dmcn.12581.CrossRefGoogle Scholar
Wier, ML, Yoshida, CK, Odonli, R, Grether, JK, Croen, LA. Congenital anomalies associated with autism spectrum disorders. Dev Med Child Neurol. 2006; 48: 500507, doi: Doi 10.1017/S001216220600106x.CrossRefGoogle ScholarPubMed
Khoury, MJ. Epidemiology of birth-defects. Epidemiol Rev 1989; 11: 244248. DOI: 10.1093/oxfordjournals.epirev.a036042.CrossRefGoogle ScholarPubMed
Ploeger, A, Raijmakers, MEJ, van der Maas, HLJ, Galis, F. The association between autism and errors in early embryogenesis: what is the Causal mechanism? Biol Psychiatry 2010; 67: 602607. DOI: 10.1016/j.biopsych.2009.10.010.CrossRefGoogle ScholarPubMed
Bauman, ML. Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 2010; 7: 320327. DOI: 10.1016/j.nurt.2010.06.001.CrossRefGoogle ScholarPubMed
Mazzone, L, Ruta, L, Reale, L. Psychiatric comorbidities in asperger syndrome and high functioning autism: diagnostic challenges. Ann Gen Psychiatr 2012; 11: 16. DOI: 10.1186/1744-859x-11-16.CrossRefGoogle ScholarPubMed
Simonoff, E, Pickles, A, Charman, T, Chandler, S, Loucas, T, Baird, G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 2008; 47: 921929. DOI: 10.1097/CHI.0b013e318179964f.CrossRefGoogle Scholar
Falkmer, T, Anderson, K, Falkmer, M, Horlin, C. Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur Child Adolesc Psychiatry 2013; 22: 329340. DOI: 10.1007/s00787-013-0375-0.CrossRefGoogle ScholarPubMed
Huerta, M, Lord, C. Diagnostic evaluation of autism spectrum disorders. Pediatr Clin North Am 2012; 59: 103–. DOI: 10.1016/j.pcl.2011.10.018.CrossRefGoogle ScholarPubMed
Balogh, EP, Miller, BT, Ball, JR. Improving Diagnosis in Health Care. In: The National Academies of Sciences E, and Medicine., Board on Health Care Services IoM, Care CoDEiH. National Academies Press (US), 2015.Google Scholar
Elder, JH, Kreider, CM, Brasher, SN, Ansell, M. Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships. Psychol Res Behav Manag 2017; 10: 283292. DOI: 10.2147/PRBM.S117499.CrossRefGoogle ScholarPubMed
Takayanagi, M, Kawasaki, Y, Shinomiya, M, et al. Review of cognitive characteristics of autism spectrum disorder using performance on six subtests on four versions of the Wechsler intelligence scale for children. J Autism Dev Disord 2022; 52: 240253. DOI: 10.1007/s10803-021-04932-x.CrossRefGoogle ScholarPubMed
Sanders, J, Johnson, KA, Garavan, H, Gill, M, Gallagher, L. A review of neuropsychological and neuroimaging research in autistic spectrum disorders: attention, inhibition and cognitive flexibility. Res Autism Spectr Disord 2008; 2: 116. DOI: 10.1016/j.rasd.2007.03.005.CrossRefGoogle Scholar
Demetriou, EA, Lampit, A, Quintana, DS, et al. Autism spectrum disorders: a meta-analysis of executive function. Mol Psychiatry 2018; 23: 11981204. DOI: 10.1038/mp.2017.75.CrossRefGoogle ScholarPubMed
Pennington, BF, Ozonoff, S. Executive functions and developmental psychopathology. J Child Psychol Psychiatry 1996; 37: 5187. DOI: 10.1111/j.1469-7610.1996.tb01380.x.CrossRefGoogle ScholarPubMed
Rees, SC, Taylor, A. Prognostic antecedents and outcome in a follow-up study of children with a diagnosis of childhood psychosis. J Autism Child Schizophr 1975; 5: 309322. DOI: 10.1007/BF01540678.CrossRefGoogle Scholar
Rutter, M. Autistic children: infancy to adulthood. Semin Psychiatry 1970; 2: 435450.Google ScholarPubMed
Gillberg, C, Steffenburg, S. Outcome and prognostic factors in infantile autism and similar conditions: a population-based study of 46 cases followed through puberty. J Autism Dev Disord 1987; 17: 273287. DOI: 10.1007/BF01495061.CrossRefGoogle ScholarPubMed
DeMyer, MK, Barton, S, DeMyer, WE, Norton, JA, Allen, J, Steele, R. Prognosis in autism: a follow-up study. J Autism Child Schizophr 1973; 3: 199246. DOI: 10.1007/bf01538281.CrossRefGoogle ScholarPubMed
Venter, A, Lord, C, Schopler, E. A follow-up study of high-functioning autistic children. J Child Psychol Psyc 1992; 33: 489597.CrossRefGoogle ScholarPubMed
Tager-Flusberg, H. Once upon a ribbit: stories narrated by autistic children. Br J Dev Psychol 1995; 13: 4559. DOI: 10.1111/j.2044-835X.1995.tb00663.x.CrossRefGoogle Scholar
Loveland, KA, Tunali, B. Narrative language in autism and the theory of mind hypothesis: A wider perspective. In: Baron-Cohen, S, Tager-Flusberg, H, Cohen, DJ (eds). Understanding other minds: Perspectives from autism. Oxford University Press, 1993.Google Scholar
Losh, M, Capps, L. Narrative ability in high-functioning children with autism or asperger’s syndrome. J Autism Dev Disord 2003; 33: 239251. DOI: 10.1023/a:1024446215446.CrossRefGoogle ScholarPubMed
Losh, M, Capps, L. Understanding of emotional experience in autism: insights from the personal accounts of high-functioning children with autism. Dev Psychol 2006; 42: 809818.CrossRefGoogle ScholarPubMed
Capps, L, Losh, M, Thurber, C. The frog ate a bug and made his mouth sad: narrative competence in children with autism. J Abnorm Child Psychol 2000; 28: 193204. DOI: 10.1023/a:1005126915631.CrossRefGoogle Scholar
Capps, L, Kehres, J, Sigman, M. Conversational abilities among children with autism and children with developmental delays. Autism 1998; 2: 325344.CrossRefGoogle Scholar
Tager-Flusberg, H. Understanding the language and communicative impairments in autism. Int Rev Res Mental Retardat 2000; 23: 185205.CrossRefGoogle Scholar
Losh, M, Martin, GE, Klusek, J, Hogan-Brown, AL, Sideris, J. Social communication and theory of mind in boys with autism and fragile X syndrome. Front Psychol 2012; 3: 266. DOI: 10.3389/fpsyg.2012.00266.CrossRefGoogle ScholarPubMed
Klusek, J, Martin, GE, Losh, M. A comparison of pragmatic language in boys with autism and fragile X syndrome. J Speech Lang Hear Res 2014; 57: 16921707. DOI: 10.1044/2014_JSLHR-L-13-0064.CrossRefGoogle ScholarPubMed
Fournier, KA, Hass, CJ, Naik, SK, Lodha, N, Cauraugh, JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord 2010; 40: 12271240. DOI: 10.1007/s10803-010-0981-3.CrossRefGoogle ScholarPubMed
Haigh, SM, Walsh, JA, Mazefsky, CA, Minshew, NJ, Eack, SM. Processing speed is impaired in adults with autism spectrum disorder, and relates to social communication abilities. J Autism Dev Disord 2018; 48: 26532662. DOI: 10.1007/s10803-018-3515-z.CrossRefGoogle ScholarPubMed
Hedvall, A, Fernell, E, Holm, A, Asberg Johnels, J, Gillberg, C, Billstedt, E. Autism, processing speed, and adaptive functioning in preschool children. Sci World J 2013; 2013: 1582637. DOI: 10.1155/2013/158263.CrossRefGoogle ScholarPubMed
Bellinger, DC, Newburger, JW. Neuropsychological, psychosocial, and quality-of-life outcomes in children and adolescents with congenital heart disease. Prog Pediatr Cardiol 2010; 29: 8792. DOI: 10.1016/j.ppedcard.2010.06.007.CrossRefGoogle Scholar
Calderon, J, Angeard, N, Pinabiaux, C, Bonnet, D, Jambaque, I. Facial expression recognition and emotion understanding in children after neonatal open-heart surgery for transposition of the great arteries. Dev Med Child Neurol 2014; 56: 564571. DOI: 10.1111/dmcn.12381.CrossRefGoogle ScholarPubMed
Calderon, J, Bonnet, D, Courtin, C, Concordet, S, Plumet, MH, Angeard, N. Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Dev Med Child Neurol 2010; 52: 11391144. DOI: 10.1111/j.1469-8749.2010.03735.x.CrossRefGoogle ScholarPubMed
Cassidy, AR, Newburger, JW, Bellinger, DC. Learning and memory in adolescents with critical biventricular congenital heart disease. J Int Neuropsychol Soc 2017; 23: 627639. DOI: 10.1017/S1355617717000443.CrossRefGoogle ScholarPubMed
Sarrechia, I, Miatton, M, De Wolf, D, et al. Neurocognitive development and behaviour in school-aged children after surgery for univentricular or biventricular congenital heart disease. Eur J Cardiothorac Surg 2016; 49: 167174. DOI: 10.1093/ejcts/ezv029.CrossRefGoogle ScholarPubMed
Werninger, I, Ehrler, M, Wehrle, FM, et al. Social and behavioral difficulties in 10-year-old children with congenital heart disease: prevalence and risk factors. Front Pediatr 2020; 8: e604918. DOI: 10.3389/fped.2020.604918.CrossRefGoogle ScholarPubMed
Bellinger, DC. Are children with congenital cardiac malformations at increased risk of deficits in social cognition? Cardiol Young 2008; 18: 39. DOI: 10.1017/S104795110700176x.CrossRefGoogle ScholarPubMed
McCusker, CG, Armstrong, MP, Mullen, M, Doherty, NN, Casey, FA. A sibling-controlled, prospective study of outcomes at home and school in children with severe congenital heart disease. Cardiol Young 2013; 23: 507516. DOI: 10.1017/S1047951112001667.CrossRefGoogle ScholarPubMed
Bellinger, DC, Rivkin, MJ, DeMaso, D, et al. Adolescents with tetralogy of fallot: neuropsychological assessment and structural brain imaging. Cardiol Young 2015; 25: 338347. DOI: 10.1017/S1047951114000031.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, Rivkin, MJ, et al. Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure neuropsychological assessment and structural brain imaging. Circulation 2011; 124: 13611369. DOI: 10.1161/Circulationaha.111.026963.CrossRefGoogle ScholarPubMed
Whyte, EM, Nelson, KE. Trajectories of pragmatic and nonliteral language development in children with autism spectrum disorders. J Commun Disord 2015; 54: 214. DOI: 10.1016/j.jcomdis.2015.01.001.CrossRefGoogle ScholarPubMed
Capps, L, Kehres, J, Sigman, M. Conversational abilities among children with autism and developmental delay. Autism 1998; 2: 325344.CrossRefGoogle Scholar
Capps, L, Losh, M, Thurber, C. The frog ate the bug and made his mouth sad’: narrative competence in children with autism. J Abnorm Child Psychol 2000; 28: 193204.CrossRefGoogle ScholarPubMed
Diehl, JJ, Bennetto, L, Young, EC. Story recall and narrative coherence of high-functioning children with autism spectrum disorders. Research Support, N.I.H., Extramural. J Abnorm Child Psychol 2006; 34: 87102. DOI: 10.1007/s10802-005-9003-x.CrossRefGoogle Scholar
Losh, M, Capps, L. Narrative ability in high-functioning children with autism or Asperger’s syndrome. J Autism Dev Disord 2003; 33: 239251.CrossRefGoogle ScholarPubMed
Losh, M, Gordon, PC. Quantifying narrative ability in autism spectrum disorder: a computational linguistic analysis of narrative coherence. J Autism Dev Disord 2014; 44: 30163025. DOI: 10.1007/s10803-014-2158-y.CrossRefGoogle ScholarPubMed
Loveland, KA, McEvoy, RE, Tunali, B. Narrative story telling in autism and down’s syndrome. Br J Dev Psychol 1990; 8: 923.CrossRefGoogle Scholar
Siller, M, Swanson, MR, Serlin, G, Teachworth, AG. Internal state language in the storybook narratives of children with and without autism spectrum disorder: investigating relations to theory of mind abilities. Res Autism Spectr Disord 2014; 8: 589596. DOI: 10.1016/j.rasd.2014.02.002.CrossRefGoogle ScholarPubMed
Tager-Flusberg, H, Sullivan, K. Attributing mental states to story characters: a comparison of narratives produced by autistic and mentally retarded individuals. Appl Psycholinguist 1995; 16: 241256.CrossRefGoogle Scholar
Bush, L, Martin, GE, Landau, E, Losh, M. A longitudinal study of parent-child interactions and language outcomes in fragile X syndrome and other neurodevelopmental disorders. Frontiers in Psychiatry 2021; 8 12: e718572. DOI: 10.3389/fpsyt.2021.718572.CrossRefGoogle Scholar
Lord, C, Rutter, M, DiLavore, PC, Risi, S, Gotham, K, Bishop, SL. Autism Diagnostic Observation Schedule, Second Edition (ADOS-2). Western Psychological Services, 2012.Google Scholar
Lord, C, Rutter, M, Goode, S, et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 1989; 19: 185212.CrossRefGoogle ScholarPubMed
Lord, C, Rutter, M, Le Couteur, A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659685.CrossRefGoogle ScholarPubMed
Jaworski, JLB, Flynn, T, Burnham, N, et al. Rates of autism and potential risk factors in children with congenital heart defects. Congenit Heart Dis 2017; 12: 421429. DOI: 10.1111/chd.12461.CrossRefGoogle Scholar
Jenabi, E, Bashirian, S, Fariba, F, Naghshtabrizi, B. The association between ongenital heart disease and the risk of Autism spectrum disorders or attention-deficit/hyperactivity disorder among children: a meta-analysis. Eur J Psychiatry 2021; 36: 7176doi:. DOI: 10.1016/j.ejpsy.2021.10.001.CrossRefGoogle Scholar
Davidson, J, Gringras, P, Fairhurst, C, Simpson, J. Physical and neurodevelopmental outcomes in children with single-ventricle circulation. Arch Dis Child 2015; 100: 449453. DOI: 10.1136/archdischild-2014-306449.CrossRefGoogle ScholarPubMed
Hultman, CM, Sparen, P, Cnattingius, S. Perinatal risk factors for infantile autism. Epidemiology 2002; 13: 417423. DOI: 10.1097/00001648-200207000-00009.CrossRefGoogle ScholarPubMed
Razzaghi, H, Oster, M, Reefhuis, J. Long-term outcomes in children with congenital heart disease: national health interview survey. J Pediatr 2015; 166: 119–. DOI: 10.1016/j.jpeds.2014.09.006.CrossRefGoogle ScholarPubMed
Tsao, PC, Lee, YS, Jeng, MJ, et al. Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: a nationwide population-based longitudinal study. Eur Child Adolesc Psychiatry 2017; 26: 13511359. DOI: 10.1007/s00787-017-0989-8.CrossRefGoogle ScholarPubMed
Sigmon, ER, Kelleman, M, Susi, A, Nylund, CM, Oster, ME. Congenital heart disease and autism: a case-control study. Pediatrics 2019; 144: e20184114. DOI: 10.1542/peds.2018-4114.CrossRefGoogle ScholarPubMed
Al-Beltagi, M. Autism medical comorbidities. World J Clin Pediatr 2021; 10: 1528. DOI: 10.5409/wjcp.v10.i3.15.CrossRefGoogle ScholarPubMed
Adviento, B, Corbin, IL, Widjaja, F, et al. Autism traits in the RASopathies. J Med Genet 2014; 51: 1020. DOI: 10.1136/jmedgenet-2013-101951.CrossRefGoogle ScholarPubMed
Jalal, R, Nair, A, Lin, A, et al. Social cognition in 22q11.2 deletion syndrome and idiopathic developmental neuropsychiatric disorders. J Neurodev Disord 2021; 13: 15. DOI: 10.1186/s11689-021-09363-4.CrossRefGoogle ScholarPubMed
Smith, IM, Nichols, SL, Issekutz, K, Blake, K, Canadian Paediatric Surveillance, P. Behavioral profiles and symptoms of autism in CHARGE syndrome: preliminary Canadian epidemiological data. Am J Med Genet A 2005; 15: 248256. DOI: 10.1002/ajmg.a.30544.CrossRefGoogle Scholar
Homsy, J, Zaidi, S, Shen, YF, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015; 350: 12621266. DOI: 10.1126/science.aac9396.CrossRefGoogle ScholarPubMed
Jin, SC, Homsy, J, Zaidi, S, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 2017; 49: 15931601. DOI: 10.1038/ng.3970.CrossRefGoogle ScholarPubMed
Zaidi, S, Choi, M, Wakimoto, H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013; 13: 220223. DOI: 10.1038/nature12141.CrossRefGoogle Scholar
Zhang, Z, Shi, LH, Song, L, et al. Chromatin modifications in 22q11.2 deletion syndrome. J Clin Immunol 2021; 41: 18531864. DOI: 10.1007/s10875-021-01123-2.CrossRefGoogle ScholarPubMed
Antshel, KM, Aneja, A, Strunge, L, et al. Autistic spectrum disorders in velo-cardio facial syndrome (22q11.2 deletion). J Autism Dev Disord 2007; 37: 17761786. DOI: 10.1007/s10803-006-0308-6.CrossRefGoogle ScholarPubMed
Rosenthal, SB, Willsey, HR, Xu, Y, et al. A convergent molecular network underlying autism and congenital heart disease. Cell Syst 2021; 12: 10941107 e6. DOI: 10.1016/j.cels.2021.07.009.CrossRefGoogle ScholarPubMed
Sanders, SJ, Campbell, AJ, Cottrell, JR, et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci 2018; 41: 442456. DOI: 10.1016/j.tins.2018.03.011.CrossRefGoogle ScholarPubMed
Nayar, K, Sealock, JM, Maltman, N, et al. Elevated polygenic burden for autism spectrum disorder is associated with the broad Autism phenotype in mothers of individuals with Autism spectrum disorder. Biol Psychiatry 2021; 89: 476485. DOI: 10.1016/j.biopsych.2020.08.029.CrossRefGoogle ScholarPubMed
Woodbury-Smith, M, Paterson, AD, O'Connor, I, et al. A genome-wide linkage study of autism spectrum disorder and the broad autism phenotype in extended pedigrees. J Neurodev Disord 2018; 10: 20. DOI: 10.1186/s11689-018-9238-9.CrossRefGoogle ScholarPubMed
Woodbury-Smith, M, Scherer, SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018; 60: 445451. DOI: 10.1111/dmcn.13717.CrossRefGoogle ScholarPubMed
Thabtah, F, Peebles, D. Early autism screening: a comprehensive review. Int J Environ Res Public Health 2019; 16: 3502. DOI: 10.3390/ijerph16183502.CrossRefGoogle ScholarPubMed
Cook, JA, Collins, GS. The rise of big clinical databases. Br J Surg 2015; 102: E93E101. DOI: 10.1002/bjs.9723.CrossRefGoogle ScholarPubMed
Dawson, G, Rogers, S, Munson, J, et al. Randomized, controlled trial of an intervention for toddlers with autism: the early start denver model. Pediatrics 2010; 125: E17E23. DOI: 10.1542/peds.2009-0958.CrossRefGoogle ScholarPubMed
Elder, JH, Kreider, CM, Brasher, SN, Ansell, M. Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships. Psychol Res Behav Manag 2017; 10: 283292. DOI: 10.2147/Prbm.S117499.CrossRefGoogle ScholarPubMed
Davidovitch, M, Levit-Binnun, N, Golan, D, Manning-Courtney, P. Late diagnosis of Autism spectrum disorder after initial negative assessment by a multidisciplinary team. J Dev Behav Pediatr 2015; 36: 227234. DOI: 10.1097/Dbp.0000000000000133.CrossRefGoogle ScholarPubMed
Kentrou, V, de Veld, DMJ, Mataw, KJK, Begeer, S. Delayed autism spectrum disorder recognition in children and adolescents previously diagnosed with attention-deficit/hyperactivity disorder. Autism 2019; 23: 10651072. DOI: 10.1177/1362361318785171.CrossRefGoogle ScholarPubMed
Ko, C, Kim, N, Kim, E, Song, DH, Cheon, KA. The effect of epilepsy on autistic symptom severity assessed by the social responsiveness scale in children with autism spectrum disorder. Behav Brain Funct 2016; 12: 20. DOI: 10.1186/s12993-016-0105-0.CrossRefGoogle ScholarPubMed
Moss, J, Oliver, C, Arron, K, Burbidge, C, Berg, K. The prevalence and phenomenology of repetitive behavior in genetic syndromes. J Autism Dev Disord 2009; 39: 572588. DOI: 10.1007/s10803-008-0655-6.CrossRefGoogle ScholarPubMed
de Giambattista, C, Ventura, P, Trerotoli, P, Margari, F, Margari, L. Sex differences in Autism spectrum disorder: focus on high functioning children and adolescents. Frontiers in Psychiatry 2021; 12: 539835. DOI: 10.3389/fpsyt.2021.539835.CrossRefGoogle ScholarPubMed
Lai, MC, Lombardo, MV, Auyeung, B, Chakrabarti, B, Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J Am Acad Child Adolesc Psychiatry 2015; 54: 1124. DOI: 10.1016/j.jaac.2014.10.003.CrossRefGoogle ScholarPubMed
Zhang, Y, Li, N, Li, C, et al. Genetic evidence of gender difference in autism spectrum disorder supports the female-protective effect. Translational Psychiatry 2020; 10: 4. DOI: 10.1038/s41398-020-0699-8.CrossRefGoogle ScholarPubMed
Lax-Pericall, MT, Bird, V, Taylor, E, Lax-Pericall, MT, Bird, V, Taylor, E. Gender and psychiatric disorders in children with epilepsy. A meta-analysis, gender and psychiatric disorders in children with epilepsy. a meta-analysis. Epilepsy Behav May 2019; 94: 144150. DOI: 10.1016/j.yebeh.2019.02.014.CrossRefGoogle ScholarPubMed
Loomes, R, Hull, L, Mandy, WPL. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J Am Acad Child Adolesc Psychiatry 2017; 56: 466474. DOI: 10.1016/j.jaac.2017.03.013.CrossRefGoogle ScholarPubMed
Rotholz, DA, Kinsman, AM, Lacy, KK, Charles, J. Improving early identification and intervention for children at risk for autism spectrum disorder. Pediatrics 2017; 139: e20161061. DOI: 10.1542/peds.2016-1061.CrossRefGoogle ScholarPubMed
Swanson, AR, Warren, ZE, Stone, WL, Vehorn, AC, Dohrmann, E, Humberd, Q. The diagnosis of autism in community pediatric settings: does advanced training facilitate practice change? Autism 2014; 18: 555561. DOI: 10.1177/1362361313481507.CrossRefGoogle ScholarPubMed