Hostname: page-component-54dcc4c588-smtgx Total loading time: 0 Render date: 2025-09-11T08:30:21.816Z Has data issue: false hasContentIssue false

The current state of paediatric publishing utilising high-fidelity physiologic data streaming with sickbay or etiometry: a systematic review

Published online by Cambridge University Press:  05 September 2025

Rohit S. Loomba*
Affiliation:
Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Wesam Sourour
Affiliation:
Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, USA Northwestern University Feinberg School of Medicine, Chicago, IL, USA
Saul Flores
Affiliation:
Texas Children’s Hospital, Houston, TX, USA
Juan S. Farias
Affiliation:
Children’s Mercy Hospital, Kansas City, MO, USA
Michael Goldsmith
Affiliation:
University of Pennsylvania Perelman School of Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
Javier J. Lasa
Affiliation:
UT Southwestern Medical Center, Dallas, TX, USA
Orkun Baloglu
Affiliation:
Cleveland Clinic Children’s, Cleveland, OH, USA
*
Correspondening author: Rohit S. Loomba; Email: Loomba.rohit@gmail.com

Abstract

Background:

Physiologic data streaming and aggregation platforms such as Sickbay® and Etiometry are becoming increasingly used in the paediatric acute care setting. As these platforms gain popularity in clinical settings, there has been a parallel growth in scholarly interest. The primary aim of this study is to characterise research productivity utilising high-fidelity physiologic streaming data with Sickbay® or Etiometry in the acute care paediatric setting.

Methods:

A systematic review of the literature was conducted to identify paediatric publications using data from Sickbay® or Etiometry. The resulting publications were reviewed to characterise them and identify trends in these publications.

Results:

A total of 41 papers have been published over 9 years using either platform. This involved 179 authors across 21 institutions. Most studies utilised Sickbay®, involved cardiac patients, were single-centre, and did not utilise machine learning or artificial intelligence methods. The number of publications has been significantly increasing over the past 9 years, and the average number of citations for each publication was 7.9.

Conclusion:

A total of 41 papers have been published over 9 years using Sickbay® or Etiometry data in the paediatric setting. Although the majority of these are single-centre and pertain to cardiac patients, growth in publication volume suggests growing utilisation of high-fidelity physiologic data beyond clinical applications. Multicentre efforts may help increase the number of centres that can do such work and help drive improvements in clinical care.

Information

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Kamaleswaran, R, McGregor, C. A review of visual representations of physiologic data. JMIR Med Inform 2016; 4: e31.10.2196/medinform.5186CrossRefGoogle ScholarPubMed
Kruger, GH, Tremper, KK. Advanced integrated real-time clinical displays. Anesthesiol Clin 2011; 29: S1932227511000413.Google ScholarPubMed
Goldsmith, MP, Schwartz, EJ, Hehir, DA. Data analytics in pediatric cardiac intensive care: how and what can we learn to improve care. Prog Pediatr Cardiol 2020; 59: 101317.CrossRefGoogle Scholar
Grogan, KL, Goldsmith, MP, Masino, AJ, Nelson, O, Tsui, FC, Simpao, AF. A narrative review of analytics in pediatric cardiac anesthesia and critical care medicine. J Cardiothorac Vasc Anesth 2020; 34: 479482.CrossRefGoogle ScholarPubMed
Ju, Y, Waugh, JLS, Singh, S, Rusin, CG, Patel, AB, Jain, PN. A multimodal deep learning tool for detection of junctional ectopic tachycardia in children with congenital heart disease. Heart Rhythm O2 2024; 5: 452459.10.1016/j.hroo.2024.04.014CrossRefGoogle ScholarPubMed
Rusin, CG, Acosta, SI, Brady, KM et al. Automated prediction of cardiorespiratory deterioration in patients with single-ventricle parallel circulation: a multicenter validation study. JTCVS Open 2023; 15: 406411.CrossRefGoogle ScholarPubMed
Rusin, CG, Acosta, SI, Vu, EL, Ahmed, M, Brady, KM, Penny, DJ. Automated prediction of cardiorespiratory deterioration in patients with single ventricle. J Am Coll Cardiol 2021; 77: 31843192.10.1016/j.jacc.2021.04.072CrossRefGoogle ScholarPubMed
Waugh, JLS, Patel, R, Ju, Y, Patel, AB, Rusin, CG, Jain, PN. A novel automated junctional ectopic tachycardia detection tool for children with congenital heart disease. Heart Rhythm O2 2022; 3: 302310.10.1016/j.hroo.2022.02.014CrossRefGoogle ScholarPubMed
Brinkley, M, Biard, M, Masuoka, I, Hagan, J. Evaluation of occupational therapy and music therapy co-treatment in the neonatal intensive care unit. Phys Occup Ther Pediatr 2024; 44: 513525.10.1080/01942638.2023.2253894CrossRefGoogle ScholarPubMed
Mikulski, MF, Linero, A, Stromberg, D et al. Analysis of haemodynamics surrounding blood transfusions after the arterial switch operation: a pilot study utilising real-time telemetry high-frequency data capture. Cardiol Young 2024; 34: 11091116.10.1017/S104795112400009XCrossRefGoogle ScholarPubMed
Gilg, S, Acosta, S, Loomba, RS et al. Association between balloon atrial septostomy and prostaglandin E1 therapy until repair of transposition of the great arteries in neonates. Pediatr Investig 2024; 8: 135138.10.1002/ped4.12425CrossRefGoogle ScholarPubMed
Elhoff, JJ, Acosta, S, Flores, S et al. Parental holding of infants improves haemodynamics in the cardiac ICU. Cardiol Young 2024; 34: 10041009.CrossRefGoogle ScholarPubMed
Savorgnan, F, Crouthamel, DI, Heroy, A, Santerre, J, Acosta, S. Markov model for detection of ECG instability prior to cardiac arrest in single-ventricle patients. J Electrocardiol 2023; 80: 106110.10.1016/j.jelectrocard.2023.05.011CrossRefGoogle ScholarPubMed
Savorgnan, F, Loomba, RS, Flores, S et al. Descriptors of failed extubation in norwood patients using physiologic data streaming. Pediatr Cardiol 2023; 44 : 396403.10.1007/s00246-022-03084-8CrossRefGoogle ScholarPubMed
Bronicki, RA, Acosta, S, Savorgnan, F et al. The acute influence of vasopressin on hemodynamic status and tissue oxygenation following the norwood procedure. JTCVS Open 2022; 9: 217224.10.1016/j.xjon.2022.01.008CrossRefGoogle ScholarPubMed
Savorgnan, F, Crouthamel, DI, Heroy, A, Santerre, J, Acosta, S. Quantification of electrocardiogram instability prior to cardiac arrest in patients with single-ventricle physiology. J Electrocardiol 2022; 73: 2933.10.1016/j.jelectrocard.2022.05.001CrossRefGoogle ScholarPubMed
Savorgnan, F, Moreira, A, Moreira, A et al. Physiologic profile associated with severe multisystem inflammatory syndrome in children: a retrospective study. Pediatr Res 2023; 93: 102109.Google ScholarPubMed
Savorgnan, F, Flores, S, Loomba, RS et al. Hemodynamic response to calcium chloride boluses in single-ventricle patients with parallel circulation. Pediatr Cardiol 2022; 43: 554560.10.1007/s00246-021-02754-3CrossRefGoogle ScholarPubMed
Savorgnan, F, Flores, S, Loomba, RS, Acosta, S. Hemodynamic response to fluid boluses in patients with single-ventricle parallel circulation. Pediatr Cardiol 2022; 43: 17841791.10.1007/s00246-022-02915-yCrossRefGoogle ScholarPubMed
Savorgnan, F, Bhat, PN, Checchia, PA et al. RBC transfusion induced ST segment variability following the norwood procedure. Crit Care Explor 2021; 3: e0417.Google ScholarPubMed
Asfari, A, Wolovits, J, Gazit, AZ et al. A near real-time risk analytics algorithm predicts elevated lactate levels in pediatric cardiac critical care patients. Crit Care Explor 2023; 5: e1013.Google ScholarPubMed
Goldsmith, MP, Nadkarni, VM, Futterman, C et al. Use of a risk analytic algorithm to inform weaning from vasoactive medication in patients following pediatric cardiac surgery. Crit Care Explor 2021; 3: e0563.Google ScholarPubMed
Futterman, C, Salvin, JW, McManus, M et al. Inadequate oxygen delivery index dose is associated with cardiac arrest risk in neonates following cardiopulmonary bypass surgery. Resuscitation 2019; 142: 7480.10.1016/j.resuscitation.2019.07.013CrossRefGoogle ScholarPubMed
Rogers, L, Ray, S, Johnson, M, et al. The inadequate oxygen delivery index and low cardiac output syndrome score as predictors of adverse events associated with low cardiac output syndrome early after cardiac bypass. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2019; 20: 737743.Google ScholarPubMed
Ross, CE, Asaro, LA, Wypij, D, Holland, CC, Donnino, MW, Kleinman, ME. Physiologic response to pre-arrest bolus dilute epinephrine in the pediatric intensive care unit. Resuscitation 2018; 126: 137142.10.1016/j.resuscitation.2018.03.011CrossRefGoogle ScholarPubMed
Loomba, RS, Villarreal, EG, Farias, JS, Flores, S, Wong, J. Factors associated with renal oxygen extraction in mechanically ventilated children after the Norwood operation: insights from high fidelity haemodynamic data. Cardiol Young 2024; 24: 16.Google Scholar
Loomba, RS, Mansukhani, S, Wong, J. Factors that mediate change in creatinine and acute kidney injury after the Norwood operation: insights from high-fidelity haemodynamic monitoring data. Cardiol Young 2024; 34: 17791786.10.1017/S1047951124000842CrossRefGoogle ScholarPubMed
Loomba, RS, Villarreal, EG, Flores, S, Farias, JS, Constas, A. The inadequate oxygen delivery index and its correlation with venous saturation in the pediatric cardiac intensive care unit. Pediatr Cardiol 2025; 46: 3945.10.1007/s00246-023-03302-xCrossRefGoogle ScholarPubMed
Loomba, RS, Flores, S, Farias, JS, Villarreal, EG, Constas, A. Estimation of the inferior caval vein saturation using high-fidelity non-invasive haemodynamic values and validation of modelled estimates. Cardiol Young 2024; 34: 15291534.CrossRefGoogle ScholarPubMed
Mullen, J, Sattari, S, Rauch, M, Stein, F, Roy, K, Acorda, DE. Utilizing data and alarm champions to enhance alarm management: a pediatric quality improvement initiative. J Nurs Care Qual 2024; 39: 369375.10.1097/NCQ.0000000000000787CrossRefGoogle ScholarPubMed
Rusin, CG, Acosta, SI, Shekerdemian, LS et al. Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data. J Thorac Cardiovasc Surg 2016; 152: 171177.10.1016/j.jtcvs.2016.03.083CrossRefGoogle ScholarPubMed
Vu, EL, Rusin, CG, Penny, DJ et al. A novel electrocardiogram algorithm utilizing ST-segment instability for detection of cardiopulmonary arrest in single ventricle physiology: a retrospective study. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2017; 18: 4453.Google ScholarPubMed
Cruz, SM, Lau, PE, Rusin, CG et al. A novel multimodal computational system using near-infrared spectroscopy predicts the need for ECMO initiation in neonates with congenital diaphragmatic hernia. J Pediatr Surg 2017; 53: 152158.10.1016/j.jpedsurg.2017.10.031CrossRefGoogle Scholar
Achuff, BJ, Achuff, JC, Park, HH et al. Epinephrine syringe exchange events in a paediatric cardiovascular ICU: analysing the storm. Cardiol Young 2018; 28: 409415.10.1017/S1047951117002232CrossRefGoogle Scholar
Valdés, SO, Miyake, CY, Niu, MC et al. Early experience with intravenous sotalol in children with and without congenital heart disease. Heart Rhythm 2018; 15: 18621869.10.1016/j.hrthm.2018.07.010CrossRefGoogle ScholarPubMed
Achuff, BJ, Moffett, BS, Acosta, S, Lasa, JJ, Checchia, PA, Rusin, CG. Hypotensive response to IV acetaminophen in pediatric cardiac patients. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2019; 20: 527533.Google ScholarPubMed
Acosta, S, Ahmed, M, Yin, SM, Brady, KM, Penny, DJ, Rusin, CG. A robust fourier-based method to measure pulse pressure variability. Biomed Signal Process Control 2020; 60: 101947.10.1016/j.bspc.2020.101947CrossRefGoogle ScholarPubMed
Alali, A, Acosta, S, Ahmed, M et al. Postoperative physiological parameters associated with severe acute kidney injury after pediatric heart transplant. Pediatr Transplant 2022; 26: e14267.10.1111/petr.14267CrossRefGoogle ScholarPubMed
Jain, PN, Acosta, S, Annapragada, A et al. Comparison of laboratory and hemodynamic time series data across original, alpha and Delta variants in patients with multisystem inflammatory syndrome in children. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2022; 23: e372e381.Google ScholarPubMed
Hames, DL, Abbas, Q, Asfari, A et al. Extubation failure in neonates following congenital cardiac surgery: multicenter retrospective cohort, 2017–2020. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2025; 26: e590e599.Google ScholarPubMed
Khalil, M, Abbas, Q, Azhar, MK et al. Cardiac children hospital early warning scoreVersus the inadequate oxygen delivery index for the detection of early warning signs of deterioration. Crit Care Explor 2023; 5: e0833.Google ScholarPubMed
Dewan, M, Cooper, DS, Tegtmeyer, K. Low inadequate oxygen delivery index is associated with decreased cardiac arrest risk in high-risk pediatric ICU patients. Crit Care Explor 2022; 4: e0600.Google ScholarPubMed
Teele, SA, Gazit, AZ, Futterman, C et al. Investigation of a novel noninvasive risk analytics algorithm with laboratory central venous oxygen saturation measurements in critically ill pediatric patients. Crit Care Explor 2025; 7: e1204.Google ScholarPubMed
Hames, DL, Sleeper, LA, Bullock, KJ et al. Associations with extubation failure and predictive value of risk analytics algorithms with extubation readiness tests following congenital cardiac surgery. Pediatr Crit Care Med J Soc Crit Care Med World Fed Pediatr Intensive Crit Care Soc 2022; 23: e208e218.Google ScholarPubMed
Hunt, J, Chang, A. Big data in pediatric cardiac care: is it time?*. Pediatr Crit Care Med 2013; 14: 548549.10.1097/PCC.0b013e318291736bCrossRefGoogle ScholarPubMed
Subrahmanya, SVG, Shetty, DK, Patil, V et al. The role of data science in healthcare advancements: applications, benefits, and future prospects. Ir J Med Sci 2022; 191 : 14731483.10.1007/s11845-021-02730-zCrossRefGoogle ScholarPubMed
Tan, SSL, Gao, G, Koch, S. Big data and analytics in healthcare. Methods Inf Med 2015; 54: 546547.Google ScholarPubMed
Wang, W, Krishnan, E. Big data and clinicians: a review on the state of the science. JMIR Med Inform 2014; 2: e1.10.2196/medinform.2913CrossRefGoogle ScholarPubMed
Goyal, P, Malviya, R. Challenges and opportunities of big data analytics in healthcare. Health Care Sci 2023; 2: 328338.10.1002/hcs2.66CrossRefGoogle ScholarPubMed
Kwak, SK, Kim, JH. Statistical data preparation: management of missing values and outliers. Korean J Anesthesiol 2017; 70: 407411.10.4097/kjae.2017.70.4.407CrossRefGoogle ScholarPubMed
Binder, H, Blettner, M. Big data in medical science--a biostatistical view. Dtsch Arzteblatt Int 2015; 112: 137142.Google ScholarPubMed
Cox, DR, Kartsonaki, C, Keogh, RH. Big data: some statistical issues. Stat Probab Lett 2018; 136: 111115.10.1016/j.spl.2018.02.015CrossRefGoogle ScholarPubMed
Anderson, TW. The Statistical Analysis of Time Series. Wiley Classics Library edition. John Wiley & Sons, Inc, 1994; 4349.10.1002/9781118186428CrossRefGoogle Scholar