Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T20:47:32.575Z Has data issue: false hasContentIssue false

(Z2)k-Actions Fixing a Product of Spheres and a Point

Published online by Cambridge University Press:  20 November 2018

Pedro L. Q. Pergher*
Affiliation:
Departamento de Matemática, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, 13565-905-São Carlos-SP, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the paper we identify up to bordism all manifolds with (Z2)k-action whose fixed point set is Sn × Sm U point.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Royster, D. C., Involutions fixing the disjoint union of two projective spaces, Indiana Univ. Math. J. (2) 29(1980).Google Scholar
2. Capobianco, F. L., Stationary points of (Z2)k-actions, Proc. Amer. Math. Soc. 61(1976), 377380.Google Scholar
3. Milnor, J. W., Some consequences of a theorem ofBott, Ann. of Math. (2) 68(1958), 444449.Google Scholar
4. Atiyah, M., K-Theory, W. A. Benjamin, Inc., New York, 1967.Google Scholar
5. Conner, P. E., Dijferentiable Periodic Maps, Second Edition, Lecture Notes in Math. 738, Springer-Verlag, Berlin, 1979.Google Scholar
6. Conner, P. E. and Floyd, E. E., Dijferentiable Periodic Maps, Springer-Verlag, Berlin, 1964.Google Scholar
7. Stong, R. E., Bordism and involutions, Ann. of Math. 90(1969), 4774.Google Scholar
8. Stong, R. E., Equivariant bordism and (Z2)k-actions, Duke Math. J. 37(1970), 779785.Google Scholar
9. Stong, R. E., Involutions fixing projective spaces, Michigan Math. J. 13(1966), 445447.Google Scholar
10. Wu, W. T., Les i-carrés dans une variété grassmannienne, C. R. Acad. Sci. Paris 230(1950), 918920.Google Scholar