Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T02:35:15.175Z Has data issue: false hasContentIssue false

Universal Minimal Flows of Groups of Automorphisms of Uncountable Structures

Published online by Cambridge University Press:  20 November 2018

Dana Bartošová*
Affiliation:
Department of Mathematics, University of Toronto, Bahen Center, 40 St. George St., Toronto, ON M5S 2E4 e-mail: dana.bartosova@utoronto.ca Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic M5S 2E4
Rights & Permissions [Opens in a new window]

Abstract.

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is a well-known fact that the greatest ambit for a topological group $G$ is the Samuel compactification of $G$ with respect to the right uniformity on $G$. We apply the original description by Samuel from 1948 to give a simple computation of the universal minimal flow for groups of automorphisms of uncountable structures using Fraϊssé theory and Ramsey theory. This work generalizes some of the known results about countable structures

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[AH78] Abramson, Fred G. and Harrington, Leo A., Models without indiscernibles. J. Symbolic Logic 43 (1978), 572600. http://dx.doi.org/10.2307/2273534 Google Scholar
[BF97] Balcar, Bohuslav and Franek, Frantisek, Structural properties of universal minimal dynamical systems for discrete semigroups. Trans. Amer. Math. Soc. 349 (1997), 16971724. http://dx.doi.org/10.1090/S0002-9947-97-01868-0 Google Scholar
[BK96] Becker, Howard and Kechris, Alexander S., The descriptive set theory of Polish group actions. London Math. Soc. Lecture Note Ser. 232, Cambridge University Press, Cambridge, 1996.Google Scholar
[dV93] de Vries, J., Elements of topological dynamics. Math. Appl. 257, Kluwer Academic Publishers Group, Dordrecht, 1993.Google Scholar
[Fra54] Fraïssé, Roland, Sur l’extension aux relations de quelques propriétés des ordres. Ann. Sci. Ecole Norm. Sup. (3) 71 (1954), 363388.Google Scholar
[GG] Glasner, E. and Gutman, Y., The universal minimal space for groups of homeomorphisms of h-spaces. Preprint.Google Scholar
[GW02] Glasner, E. and Weiss, B., Minimal actions of the group S(Z) of permutations of the integers. Geom. Funct. Anal. 12 (2002), 964988. http://dx.doi.org/10.1007/PL00012651 Google Scholar
[GLR72] Graham, R. L., Leeb, K., and Rothschild, B. L., Ramsey's theorem for a class of categories. Advances in Math. 8 (1972), 417433. http://dx.doi.org/10.1016/0001-8708(7)90005-9 Google Scholar
[GR] Graham, R. L. and Rothschild, B. L., Ramsey's theorem for n-parameter sets. Trans. Amer. Math. Soc. 159 (1971), 257292.Google Scholar
[Gut10] Gutman, Yonatan, Minimal hyperspace actions of Homeo(βω\ω). In: Workshop on the Concentration Phenomenon, Transformation Groups and Ramsey Theory, Fields Institute, Toronto, October 2010.Google Scholar
[Hod97] Hodges, Wilfrid, A shorter model theory. Cambridge University Press, Cambridge, 1997.Google Scholar
[KPT05] Kechris, A. S., Pestov, V. G., and Todorcevic, S., Fraĭssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15 (2005), 106189. http://dx.doi.org/10.1007/s00039-005-0503-1 Google Scholar
[MB89] Monk, J. Donald and Bonnet, Robert (eds.), Handbook of Boolean algebras. Vol. 2. North-Holland Publishing Co., Amsterdam, 1989.Google Scholar
[NR77] Nešetřil, Jaroslav and Rödl, Vojtěch, Partitions of finite relational and set systems. J. Combinatorial Theory Ser.. 22 (1977), 289312.Google Scholar
[Pes98] Pestov, Vladimir G., On free actions, minimal flows, and a problem by Ellis. Trans. Amer. Math. Soc. 350 (1998), 41494165. http://dx.doi.org/10.1090/S0002-9947-98-02329-0 Google Scholar
[Sam48] Samuel, Pierre, Ultrafilters and compactification of uniform spaces. Trans. Amer. Math. Soc. 64 (1948), 100132. http://dx.doi.org/10.1090/S0002-9947-1948-0025717-6 Google Scholar
[She82] Shelah, Saharon, Proper forcing. Lecture Notes in Math. 940, Springer-Verlag, Berlin, 1982.Google Scholar
[SS88] Shelah, Saharaon and Steprans, Juris, PFA implies all automorphisms are trivial. Proc. Amer. Math. Soc. 104 (1988), 12201225. http://dx.doi.org/10.1090/S0002-9939-1988-0935111-X Google Scholar
[Sto36] Stone, M. H., The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 40 (1936), 37111.Google Scholar
[Tho86] Thomas, Simon, Groups acting on infinite-dimensional projective spaces. J. London Math. Soc. (2) 34 (1986), 265273. http://dx.doi.org/10.1112/jlms/s2-34.2.265 Google Scholar
[Usp00] Uspenskij, Vladimir, On universal minimal compact G-spaces. Topology Proc. 25 (2000), 301308.Google Scholar
[Ury] Urysohn, Paul, Sur un espace métrique universel. Bull. Sci. Math. 51 (1927), 4364, 7490.Google Scholar
[vD90] van Douwen, Eric K., The automorphism group of P(!)= fin need not be simple. Topology Appl. 34 (1990), 97103. http://dx.doi.org/10.1016/0166-8641(90)90092-G Google Scholar
[Vel93] Veličković, Boban, OCA and automorphisms of P(!)= fin. Topology Appl. 49 (1993), 113. http://dx.doi.org/10.1016/0166-8641(93)90127-Y Google Scholar