Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T22:33:39.523Z Has data issue: false hasContentIssue false

Uniform bound on the number of partitions for optimal configurations of the Ohta–Kawasaki energy in 3D

Published online by Cambridge University Press:  24 May 2023

Xin Yang Lu*
Affiliation:
Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 1L1, Canada
Jun-cheng Wei
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada e-mail: jcwei@math.ubc.ca

Abstract

We study a 3D ternary system which combines an interface energy with a long-range interaction term. Several such systems were derived as a sharp-interface limit of the Nakazawa–Ohta density functional theory of triblock copolymers. Both the binary case in 2D and 3D, and the ternary case in 2D, are quite well understood, whereas very little is known about the ternary case in 3D. In particular, it is even unclear whether minimizers are made of finitely many components. In this paper, we provide a positive answer to this, by proving that the number of components in a minimizer is bounded from above by a computable quantity depending only on the total masses and the interaction coefficients. There are two key difficulties, namely, the impossibility to decouple the long-range interaction from the perimeter term, and the absence of a quantitative isoperimetric inequality with two mass constraints in 3D. Therefore, the actual shape of minimizers is unknown, even for small masses, making the construction of suitable competing configurations significantly more delicate.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

X.Y.L. acknowledges the support of the NSERC. The research of J.W. is partially supported by the NSERC.

References

Alama, S., Bronsard, L., Lu, X., and Wang, C., Periodic minimizers of a ternary non-local isoperimetric problem . Indiana Univ. Math. J. 70(2021), 25572601.CrossRefGoogle Scholar
Bonacini, M. and Cristoferi, R., Local and global minimality results for a nonlocal isoperimetric problem on ${R}^N$ . SIAM J. Math. Anal. 46(2014), 23102349.CrossRefGoogle Scholar
Choksi, R., Muratov, C. B., and Topaloglu, I., An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications . Notices Amer. Math. Soc. 64(2017), 12751283.CrossRefGoogle Scholar
Choksi, R. and Peletier, M. A., Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional . SIAM J. Math. Anal. 42(2010), 13341370.CrossRefGoogle Scholar
Choksi, R. and Peletier, M. A., Small volume-fraction limit of the diblock copolymer problem: II. Diffuse-interface functional . SIAM J. Math. Anal. 43(2011), 739763.CrossRefGoogle Scholar
Choksi, R. and Ren, X., On the derivation of a density functional theory for microphase separation of diblock copolymers . J. Stat. Phys. 113(2003), 151176.CrossRefGoogle Scholar
Dorff, R., Lawlor, G., Sampson, D., and Wilson, B., Proof of the planar double bubble conjecture using metacalibration methods . Involve 2(2010), 611628.CrossRefGoogle Scholar
Foisy, J., Garcia, M. A., Brock, J., Hodges, N., and Zimba, J., The standard double soap bubble in ${R}^2$ uniquely minimizes perimeter . Pacific J. Math. 159(1993), 4759.CrossRefGoogle Scholar
Frank, R. L. and Lieb, E. H., A compactness lemma and its application to the existence of minimizers for the liquid drop model . SIAM J. Math. Anal. 47(2015), 44364450.CrossRefGoogle Scholar
Gamow, G., Mass defect curve and nuclear constitution . Proc. R. Soc. Lond. Ser. A 126(1930), 632644; Containing Papers of a Mathematical and Physical Character.Google Scholar
Hutchings, M., The structure of area-minimizing double bubbles . J. Geom. Anal. 7(1997), 285304.CrossRefGoogle Scholar
Hutchings, M., Morgan, F., Ritoré, M., and Ros, A., Proof of the double bubble conjecture . Ann. of Math. (2) 155(2002), 459489.CrossRefGoogle Scholar
Knüpfer, H. and Muratov, C. B., On an isoperimetric problem with a competing nonlocal term I: the planar case . Comm. Pure Appl. Math. 66(2013), 11291162.CrossRefGoogle Scholar
Knüpfer, H., Muratov, C. B., and Novaga, M., Low density phases in a uniformly charged liquid . Comm. Math. Phys. 345(2016), 141183.CrossRefGoogle Scholar
Knüpfer, H., Muratov, C. B., and Novaga, M., Emergence of nontrivial minimizers for the three-dimensional Ohta–Kawasaki energy . Pure Appl. Anal. 2(2019), 121.Google Scholar
Lu, J. and Otto, F., Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker model . Comm. Pure Appl. Math. 67(2014), 16051617.CrossRefGoogle Scholar
Milman, E. and Neeman, J., The Gaussian double-bubble conjecture. Ann. of Math. (2) 195(2022), 89206.Google Scholar
Morgan, F. and Ritoré, M., Geometric measure theory and the proof of the double bubble conjecture . In: Proceedings of the Clay Research Institution Summer School, MSRI, Berkeley, CA, 2001.Google Scholar
Morgan, F. and Wichiramala, W., The standard double bubble is the unique stable double bubble in ${R}^2$ . Proc. Amer. Math. Soc. 130(2002), 27452751.CrossRefGoogle Scholar
Muratov, C. and Knüpfer, H., On an isoperimetric problem with a competing nonlocal term II: the general case . Comm. Pure Appl. Math. 67(2014), 19741994.CrossRefGoogle Scholar
Nakazawa, H. and Ohta, T., Microphase separation of ABC-type triblock copolymers . Macromolecules 26(1993), 55035511.CrossRefGoogle Scholar
Ohta, T. and Kawasaki, K., Equilibrium morphology of block copolymer melts . Macromolecules 19(1986), 26212632.CrossRefGoogle Scholar
Reichardt, B. W., Heilmann, C., Lai, Y. Y., and Spielman, A., Proof of the double bubble conjecture in ${R}^4$ and certain higher dimensional cases . Pacific J. Math. 208(2003), 347366.CrossRefGoogle Scholar
Ren, X. and Wei, J., Triblock copolymer theory: free energy, disordered phase and weak segregation . Phys. D 178(2003), 103117.CrossRefGoogle Scholar
Ren, X. and Wei, J., Triblock copolymer theory: ordered ABC lamellar phase . J. Nonlinear Sci. 13(2003), 175208.CrossRefGoogle Scholar