No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $\Gamma$ be a connection on a smooth manifold
$M$. In this paper we give some properties of
$\Gamma$ by studying the corresponding Lie algebras. In particular, we compute the first Chevalley–Eilenberg cohomology space of the horizontal vector fields Lie algebra on the tangent bundle of
$M$, whose the corresponding Lie derivative of
$\Gamma$ is null, and of the horizontal nullity curvature space.
Etant donné une connexion Γ sur une variété différentiable $M$, dans ce papier on se propose de donner quelques propriétés de
$\Gamma$ en étudiant les algèbres de Lie associées à cette connexion. En particulier, on calcule le premier espace de cohomologie de Chevalley–Eilenberg de la partie horizontale de l’algèbre de Lie des champs de vecteurs sur le fibré tangent de
$M$ dont la dérivée de Lie correspondante de
$\Gamma$ est nulle, et de l’espace de nullité horizontal de la courbure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.