Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T19:56:47.234Z Has data issue: false hasContentIssue false

Stable Rank and the -Equation

Published online by Cambridge University Press:  20 November 2018

Rudolf Rupp*
Affiliation:
Universität Karlsruhe Mathematisches Institut I Englerstr. 2 D-7500 Karlsruhe 1
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G denote a plane domain bounded by finitely many closed, non-intersecting Jordan curves. We show the following refinement of the stable rank one property of : Suppose that for there exists δ > 0 such that . Then there exist such that

f + hg = exp (k).

Also we obtain a partial result for the algebra H(G).

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Corach, G., ED. Suärez, Extension problems and stable rank in commutative Banach algebras, Topology Appl. 21 (1985), 18.Google Scholar
2. Corach, G., ED. Suärez, On the stable rank of uniform algebras and H°°, Proc. Amer. Math. Soc. 98( 1986), 607610.Google Scholar
3. Fischer, W., Lieb, I., Funktionentheorie. Vieweg, Braunschweig, 1980.Google Scholar
4. Golusin, G.M., Geometrische Funktionentheorie. VEB Deutscher Verlag der Wissenschaften, Berlin, 1957.Google Scholar
5. Jones, P.W., Marshall, D., Wolff, T., Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96( 1986), 603 604.Google Scholar
6. Pommerenke, Chr., Univalent Functions. Vandenhoeck& Ruprecht, Göttingen, 1975.Google Scholar
7. Rudin, W., Functional Analysis. McGraw-Hill, 1973.Google Scholar
8. Whyburn, G.T., Topological Analysis. Princeton University Press, 1958.Google Scholar
9. Zalcman, L., Analytic Capacity and Rational Approximation. Springer Lecture Notes in Mathematics 50 (1968).Google Scholar