Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T17:59:02.631Z Has data issue: false hasContentIssue false

Representation Equivalent Bieberbach Groups and Strongly Isospectral Flat Manifolds

Published online by Cambridge University Press:  20 November 2018

Emilio A. Lauret*
Affiliation:
Facultad de Matemática Astronomía y Física (FaMAF), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, X5000HUA, Córdoba, Argentina e-mail: elauret@famaf.unc.edu.ar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let ${{\Gamma }_{1}}$ and ${{\Gamma }_{2}}$ be Bieberbach groups contained in the full isometry group $G$ of ${{\mathbb{R}}^{n}}$. We prove that if the compact flat manifolds ${{\Gamma }_{1}}\backslash {{\mathbb{R}}^{n}}$ and ${{\Gamma }_{2}}\backslash {{\mathbb{R}}^{n}}$ are strongly isospectral, then the Bieberbach groups ${{\Gamma }_{1}}$ and ${{\Gamma }_{2}}$ are representation equivalent; that is, the right regular representations ${{L}^{2}}\left( {{\Gamma }_{1}}\backslash G \right)$ and ${{L}^{2}}\left( {{\Gamma }_{2}}\backslash G \right)$ are unitarily equivalent.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

Footnotes

Supported by CONICET and Secyt-UNC

References

[Go09] Gordon, C., Sunada's isospectrality technique: two decades later. In: Spectral analysis in geometry and number theory, Contemp. Math., 484, American Mathematical Society, Providence, RI, 2009), pp. 4558.Google Scholar
[LMR12] Lauret, E., Miatello, R., and Rossetti, J. P., Representation equivalence and p-spectrum of constant curvature space forms. J. Geom. Anal., to appear; arxiv:1209.4916[math.SP].Google Scholar
[Pe95] Pesce, H., Variétés hyperboliques et elliptiques fortement isospectrales. J. Funct. Anal. 133 (1995), no. 2, 363391.http://dx.doi.org/10.1006/jfan.1995.1150 CrossRefGoogle Scholar
[Pe96] Pesce, H., Représentations relativement équivalentes et variétés riemanniennes isospectrales. Comment. Math. Helv. 71 (1996), no. 2, 243268.http://dx.doi.org/10.1007/BF02566419 Google Scholar
[Wa73] Wallach, N. R., Harmonic analysis on homogeneous spaces. Pure and AppliedMathematics, 19, Marcel Dekker, Inc., New York, 1973.Google Scholar