Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T10:06:44.118Z Has data issue: false hasContentIssue false

Remarks on Hopf Images and Quantum Permutation Groups$S_{n}^{+}$

Published online by Cambridge University Press:  20 November 2018

Paweł Józiak*
Affiliation:
Institute of Mathematics of the Polish Academy of Sciences, ul. Sniadeckich 8, 00-656 Warszawa, Poland and Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50–384 Wrocław, Poland, e-mail: pjoziak@impan.pl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motivated by a question of A. Skalski and P. M. Sołtan (2016) about inner faithfulness of S. Curran’s map of extending a quantum increasing sequence to a quantum permutation, we revisit the results and techniques of T. Banica and J. Bichon (2009) and study some group-theoretic properties of the quantum permutation group on points. This enables us not only to answer the aforementioned question in the positive for the case where $n\,=\,4,\,k\,=\,2$, but also to classify the automorphisms of $S_{4}^{+}$, describe all the embeddings ${{O}_{-1}}(2)\,\subset \,S_{4}^{+}$ and show that all the copies of ${{O}_{-1}}(2)$ inside $S_{4}^{+}$are conjugate. We then use these results to show that the converse to the criterion we applied to answer the aforementioned question is not valid.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Banica, T., Symmetries ofa generic coaction. Math. Ann. 314(1999), no. 4, 763780.http://dx.doi.org/10.1007/s002080050315 Google Scholar
[2] Banica, T., Truncation and duality resultsfor Hopf image algebras. Bull. Pol. Acad. Sei. Math. 62(2014), 161180.http://dx.doi.org/10.4064/ba62-2-5 Google Scholar
[3] Banica, T. and Bichon, J., Quantum groups acting on 4 points. J. Reine Angew. Math. 626(2009), 75114.http://dx.doi.org/10.1515/CRELLE.2009.003 Google Scholar
[4] Banica, T., Hopf Images and inner faithful representations. Glasg. Math. J. 52(2010), 677703.http://dx.doi.Org/10.1017/S001 7089510000510 Google Scholar
[5] Banica, T. and Speicher, R., Liberation of orthogonal Lie groups. Adv. Math. 222(2009), 14611501.http://dx.doi.Org/10.1016/j.aim.2009.06.009 Google Scholar
[6] Bichon, J., Quelques nouvelles déformations du groupe symétrique. C. R. Acad. Sei. Paris Sér. I Math. 330(2000), 761764.http://dx.doi.org/10.1016/S0764-4442(00)00275-5 Google Scholar
[7] Bichon, J. and Yuncken, R., Quantum subgroups ofthe compact quantumgroup SU1(3). Bull. Lond. Math. Soc. 46(2014), 315328.http://dx.doi.Org/10.1112/blms/bdt105 Google Scholar
[8] Brannan, M., Collins, B., and Vergnioux, R., The Connes embedding property for quantum group von Neumann algebras. Trans. Amer. Math. Soc. 369(2017), no. 6, 37993819. http://dx.doi.Org/10.1090/tran/6752 Google Scholar
[9] Curran, S., A characterization offreeness by invariance under quantum spreading. J. Reine Angew. Math. 659(2011), 4365. http://dx.doi.Org/10.1515/CRELLE.2O11.066 Google Scholar
[10] Daws, M., Kasprzak, P., Skalski, A., and Soltan, P. M., Closed quantum subgroups oflocally compact quantum groups. Adv. Math. 231(2012), 34733501.http://dx.doi.Org/10.1016/j.aim.2O12.09.002 Google Scholar
[11] Doi, Y., Braided bialgebras and quadratic bialgebras. Comm. Algebra 21(1993), 17311749.http://dx.doi.org/10.1080/00927879308824649 Google Scholar
[12] Golubitsky, M., Stewart, I., and Schaeffer, D. G., Singularities and groups in bifurcation theory. Vol. II. Applied Mathematical Sciences, 69, Springer-Verlag, New York, 1988.http://dx.doi.Org/10.1007/978-1-4612-4574-2 Google Scholar
[13] Józiak, P., Hopf Images in Locally compact quantum groups. PhD thesis, Institute of Mathematics Polish Academy of Sciences, 2016.Google Scholar
[14] Józiak, P., Kasprzak, P., and So łtan, P. M., Hopf images in locally compact quantum groups. J. Math. Anal. Appl. 455(2017), 141166.http://dx.doi.Org/10.1016/j.jmaa.2017.05.047 Google Scholar
[15] Kadison, R. V. and Ringrose, J. R., Fundamentals ofthe theory of Operator algebras. Vol. II. Pure and Applied Mathematics, 100, Academic Press, Inc., Orlando, FL, 1986.http://dx.doi.org/10.1016/S0079-8169(08)60611-X Google Scholar
[16] Kalantar, M. and Neufang, M., From quantum groups to groups. Canad. J. Math. 65(2013), 10731094.http://dx.doi.org/10.4153/CJM-2012-047-X Google Scholar
[17] Köstler, C. and Speicher, R., A noncommutative de Finetti theorem: invariance under quantum permutations is equivalent tofreeness with amalgamation. Comm. Math. Phys. 291(2009), 473490.http://dx.doi.org/10.1007/s00220-009-0802-8 Google Scholar
[18] Kyed, D. and Soltan, P. M., Property (T) and exotic quantum group norms. J. Noncommut. Geom. 6(2012), 773800.http://dx.doi.org/10.4171/JNCC/105 Google Scholar
[19] Patri, I., Normal subgroups, center and inner automorphisms ofcompact quantum groups. Internat. J. Math. 24(2013), 1350071, 37.http://dx.doi.org/10.1142/S0129167X13500717 Google Scholar
[20] Podles, P., Symmetries of quantum Spaces. Subgroups and quotient Spaces of quantum SU(2) and SO(3) groups. Comm. Math. Phys. 170(1995), 120.http://dx.doi.Org/10.1007/BF02099436 Google Scholar
[21] Schauenburg, P., Hopf bi-Galois extensions. Comm. Algebra 24(1996), 37973825.http://dx.doi.org/10.1080/00927879608825788 Google Scholar
[22] Skalski, A. and Soltan, P. M., Quantum families ofinvertible maps and related problems. Canad. J. Math. 68(2016), 698720.http://dx.doi.org/10.4153/CJM-2015-037-9 Google Scholar
[23] Wang, S., Quantum symmetry groups offinite Spaces. Comm. Math. Phys. 195(1998), 195211.http://dx.doi.Org/10.1007/s00220005O385 Google Scholar
[24] Woronowicz, S. L., Compact matrix pseudogroups. Comm. Math. Phys. 111(1987), 613665.http://dx.doi.Org/10.1007/BF01219077 Google Scholar
[25] Woronowicz, S. L., Compact quantum groups. In: Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845884.Google Scholar