1 Introduction
 Let 
 $\mathcal {A}$
 be a unital C
$\mathcal {A}$
 be a unital C
 $^*$
-algebra and let G be a compact group that acts strongly continuously on
$^*$
-algebra and let G be a compact group that acts strongly continuously on 
 $\mathcal {A}$
 by
$\mathcal {A}$
 by 
 $^*$
-automorphisms
$^*$
-automorphisms 
 $\alpha _g:\mathcal {A} \to \mathcal {A}$
,
$\alpha _g:\mathcal {A} \to \mathcal {A}$
, 
 $g \in G$
. In this article, we call this data a C
$g \in G$
. In this article, we call this data a C
 $^*$
-dynamical system, denote it briefly by
$^*$
-dynamical system, denote it briefly by 
 $(\mathcal {A},G,\alpha )$
, and customarily write
$(\mathcal {A},G,\alpha )$
, and customarily write 
 $\mathcal {B}:=\mathcal {A}^G:=\{x \in \mathcal {A} :(\forall g\in G) \, \alpha _g(x) = x\}$
 for its fixed point algebra. Research into C
$\mathcal {B}:=\mathcal {A}^G:=\{x \in \mathcal {A} :(\forall g\in G) \, \alpha _g(x) = x\}$
 for its fixed point algebra. Research into C
 $^*$
-dynamical systems is inherently interesting and has always been an area of active research both in operator algebras and noncommutative geometry. It is desirable to identify properties of C
$^*$
-dynamical systems is inherently interesting and has always been an area of active research both in operator algebras and noncommutative geometry. It is desirable to identify properties of C
 $^*$
-dynamical systems that are both commonly occurring and significant enough to obtain interesting results. To expedite matters, let us revisit the notion of freeness, which exemplifies one such property: A C
$^*$
-dynamical systems that are both commonly occurring and significant enough to obtain interesting results. To expedite matters, let us revisit the notion of freeness, which exemplifies one such property: A C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 is called free if the so-called Ellwood map
$(\mathcal {A},G,\alpha )$
 is called free if the so-called Ellwood map 
 $$ \begin{align*} \Phi: \mathcal{A} \otimes_{\text{alg}} \mathcal{A} \rightarrow C(G,\mathcal{A}), && \Phi(x\otimes y)(g):=x \alpha_g(y) \end{align*} $$
$$ \begin{align*} \Phi: \mathcal{A} \otimes_{\text{alg}} \mathcal{A} \rightarrow C(G,\mathcal{A}), && \Phi(x\otimes y)(g):=x \alpha_g(y) \end{align*} $$
has dense range with respect to the canonical C
 $^*$
-norm on
$^*$
-norm on 
 $C(G,\mathcal {A})$
. This condition, first introduced by Ellwood [Reference Ellwood10] for actions of quantum groups on C
$C(G,\mathcal {A})$
. This condition, first introduced by Ellwood [Reference Ellwood10] for actions of quantum groups on C
 $^*$
-algebras, is known to be equivalent to Rieffel’s saturatedness [Reference Rieffel19] and the Peter–Weyl–Galois condition [Reference Baum, Commer and Hajac2]. By [Reference Phillips16, Proposition 7.1.12 and Theorem 7.2.6], a continuous action
$^*$
-algebras, is known to be equivalent to Rieffel’s saturatedness [Reference Rieffel19] and the Peter–Weyl–Galois condition [Reference Baum, Commer and Hajac2]. By [Reference Phillips16, Proposition 7.1.12 and Theorem 7.2.6], a continuous action 
 $r:P\times G\rightarrow P$
 of a compact group G on a compact space P is free in the classical sense, i. e., all stabilizer groups are trivial, if and only if the induced C
$r:P\times G\rightarrow P$
 of a compact group G on a compact space P is free in the classical sense, i. e., all stabilizer groups are trivial, if and only if the induced C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(C(P),G,\alpha )$
, where
$(C(P),G,\alpha )$
, where 
 $\alpha _g(f)(p) := f(r(p,g))$
 for all
$\alpha _g(f)(p) := f(r(p,g))$
 for all 
 $g\in G$
,
$g\in G$
, 
 $f\in C(P)$
, and
$f\in C(P)$
, and 
 $p\in P$
, is free in the sense of Ellwood. Free C
$p\in P$
, is free in the sense of Ellwood. Free C
 $^*$
-dynamical systems thus provide a natural framework for noncommutative principal bundles. Because of this and their wide range of applications, these objects have garnered widespread interest and have been extensively studied by many researchers in recent years (see, e. g., [Reference Antonini, Guido, Isola and Rubin1, Reference Baum, Commer and Hajac2, Reference Brzeziński and Szymański4–Reference Dabrowski, Sitarz and Zucca8, Reference Farsi and Latrémolière11, Reference Gootman, Lazar and Peligrad12, Reference Phillips17, Reference Schwieger and Wagner22, Reference Schwieger and Wagner24] and ref therein).
$^*$
-dynamical systems thus provide a natural framework for noncommutative principal bundles. Because of this and their wide range of applications, these objects have garnered widespread interest and have been extensively studied by many researchers in recent years (see, e. g., [Reference Antonini, Guido, Isola and Rubin1, Reference Baum, Commer and Hajac2, Reference Brzeziński and Szymański4–Reference Dabrowski, Sitarz and Zucca8, Reference Farsi and Latrémolière11, Reference Gootman, Lazar and Peligrad12, Reference Phillips17, Reference Schwieger and Wagner22, Reference Schwieger and Wagner24] and ref therein).
 Free and ergodic C
 $^*$
-dynamical systems, also known as full multiplicity ergodic actions, have been the focal point of [Reference Wassermann26]. In particular, Wassermann proved the interesting result that each free and ergodic C
$^*$
-dynamical systems, also known as full multiplicity ergodic actions, have been the focal point of [Reference Wassermann26]. In particular, Wassermann proved the interesting result that each free and ergodic C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 can be realized as the invariants of an equivariant coaction of G on
$(\mathcal {A},G,\alpha )$
 can be realized as the invariants of an equivariant coaction of G on 
 ${\mathcal {K}}(L^2(G))$
. Noteworthily, this constitutes an important step in the classification of such C
${\mathcal {K}}(L^2(G))$
. Noteworthily, this constitutes an important step in the classification of such C
 $^*$
-dynamical systems by means of a generalized cocycle theory.
$^*$
-dynamical systems by means of a generalized cocycle theory.
 Now, let us consider a free C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 with a general fixed point algebra
$(\mathcal {A},G,\alpha )$
 with a general fixed point algebra 
 $\mathcal {B}$
. The overall purpose of this paper is to extend Wassermann’s result by showing that
$\mathcal {B}$
. The overall purpose of this paper is to extend Wassermann’s result by showing that 
 $(\mathcal {A},G,\alpha )$
 can be realized as the G-continuous part of the invariants of an equivariant coaction of G on a corner of
$(\mathcal {A},G,\alpha )$
 can be realized as the G-continuous part of the invariants of an equivariant coaction of G on a corner of 
 $\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 for a certain Hilbert space
$\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 for a certain Hilbert space 
 ${\mathfrak {H}}$
 that arises from the freeness property (Theorem 3.11). From this we derive the following representation theoretic result: Any faithful
${\mathfrak {H}}$
 that arises from the freeness property (Theorem 3.11). From this we derive the following representation theoretic result: Any faithful 
 $^*$
-representation of
$^*$
-representation of 
 $\mathcal {B}$
 on a Hilbert space
$\mathcal {B}$
 on a Hilbert space 
 ${\mathfrak {H}}_{\mathcal {B}}$
 gives rise to a faithful covariant representation of
${\mathfrak {H}}_{\mathcal {B}}$
 gives rise to a faithful covariant representation of 
 $(\mathcal {A},G,\alpha )$
 on some truncation of
$(\mathcal {A},G,\alpha )$
 on some truncation of 
 ${\mathfrak {H}}_{\mathcal {B}} \otimes {\mathfrak {H}}$
 (Corollary 3.13). It is our hope that Theorem 3.11 can be further utilized to present conditions under which certain properties of the fixed point algebra
${\mathfrak {H}}_{\mathcal {B}} \otimes {\mathfrak {H}}$
 (Corollary 3.13). It is our hope that Theorem 3.11 can be further utilized to present conditions under which certain properties of the fixed point algebra 
 $\mathcal {B}$
 pass over to
$\mathcal {B}$
 pass over to 
 $(\mathcal {A},G,\alpha )$
. Note that we do not address the problem of classifying free C
$(\mathcal {A},G,\alpha )$
. Note that we do not address the problem of classifying free C
 $^*$
-dynamical systems in this paper. In fact, this problem has been thoroughly treated in [Reference Schwieger and Wagner22] using different methods.
$^*$
-dynamical systems in this paper. In fact, this problem has been thoroughly treated in [Reference Schwieger and Wagner22] using different methods.
 Following this introduction, the fundamental definitions and notations are presented in Section 2. The proofs are provided in Section 3, which is in essence divided into three parts: first, constructing an equivariant coaction from a given free C
 $^*$
-dynamical system; second, identifying the corresponding invariants as a free C
$^*$
-dynamical system; second, identifying the corresponding invariants as a free C
 $^*$
-dynamical system; and third, proving that the original and the derived free C
$^*$
-dynamical system; and third, proving that the original and the derived free C
 $^*$
-dynamical systems are isomorphic.
$^*$
-dynamical systems are isomorphic.
2 Preliminaries and notations
2.1 About tensor products
 In this article, tensor products of C
 $^*$
-algebras are taken with respect to the minimal tensor product, which is denoted by
$^*$
-algebras are taken with respect to the minimal tensor product, which is denoted by 
 $\otimes $
. Let
$\otimes $
. Let 
 $\mathcal {A}$
,
$\mathcal {A}$
, 
 $\mathcal {B}$
, and
$\mathcal {B}$
, and 
 ${\mathcal {C}}$
 be unital C
${\mathcal {C}}$
 be unital C
 $^*$
-algebras. If there is no ambiguity, then we consider each one of them as a C
$^*$
-algebras. If there is no ambiguity, then we consider each one of them as a C
 $^*$
-subalgebra of
$^*$
-subalgebra of 
 $\mathcal {A} \otimes \mathcal {B} \otimes {\mathcal {C}}$
 and extend maps on
$\mathcal {A} \otimes \mathcal {B} \otimes {\mathcal {C}}$
 and extend maps on 
 $\mathcal {A}$
,
$\mathcal {A}$
, 
 $\mathcal {B}$
, or
$\mathcal {B}$
, or 
 ${\mathcal {C}}$
 canonically by tensoring with the respective identity map. For the sake of clarity, we also make use of the leg numbering notation, for instance, given
${\mathcal {C}}$
 canonically by tensoring with the respective identity map. For the sake of clarity, we also make use of the leg numbering notation, for instance, given 
 $x \in \mathcal {A} \otimes {\mathcal {C}}$
, we write
$x \in \mathcal {A} \otimes {\mathcal {C}}$
, we write 
 $x_{13}$
 to denote the corresponding element in
$x_{13}$
 to denote the corresponding element in 
 $\mathcal {A} \otimes \mathcal {B} \otimes {\mathcal {C}}$
.
$\mathcal {A} \otimes \mathcal {B} \otimes {\mathcal {C}}$
.
2.2 About multiplier algebras
 Let 
 $\mathcal {A}$
 be a C
$\mathcal {A}$
 be a C
 $^*$
-algebra. A linear operator
$^*$
-algebra. A linear operator 
 $m: \mathcal {A} \to \mathcal {A}$
 is said to be a multiplier of
$m: \mathcal {A} \to \mathcal {A}$
 is said to be a multiplier of 
 $\mathcal {A}$
 if for each
$\mathcal {A}$
 if for each 
 $a \in \mathcal {A}$
 there exists
$a \in \mathcal {A}$
 there exists 
 $c \in \mathcal {A}$
 such that
$c \in \mathcal {A}$
 such that 
 $a^* m(b) = c^* b$
 for all
$a^* m(b) = c^* b$
 for all 
 $b \in \mathcal {A}$
. The set of all multipliers of
$b \in \mathcal {A}$
. The set of all multipliers of 
 $\mathcal {A}$
 is a unital C
$\mathcal {A}$
 is a unital C
 $^*$
-algebra which is denoted by
$^*$
-algebra which is denoted by 
 ${\mathcal {M}}(\mathcal {A})$
 and called the multiplier algebra of
${\mathcal {M}}(\mathcal {A})$
 and called the multiplier algebra of 
 $\mathcal {A}$
. For a faithful and nondegenerate
$\mathcal {A}$
. For a faithful and nondegenerate 
 $^*$
-representation
$^*$
-representation 
 ${\pi : \mathcal {A} \to {\mathcal {L}}({\mathfrak {H}})}$
 it may be identified with the following operator algebra:
${\pi : \mathcal {A} \to {\mathcal {L}}({\mathfrak {H}})}$
 it may be identified with the following operator algebra: 
 $$ \begin{align*} {\mathcal{M}}(\mathcal{A}) = \{ m \in {\mathcal{L}}({\mathfrak{H}}) : (\forall a \in \mathcal{A}) \, ma, am \in \mathcal{A}\}. \end{align*} $$
$$ \begin{align*} {\mathcal{M}}(\mathcal{A}) = \{ m \in {\mathcal{L}}({\mathfrak{H}}) : (\forall a \in \mathcal{A}) \, ma, am \in \mathcal{A}\}. \end{align*} $$
Note that if 
 $\mathcal {A}$
 is a unital C
$\mathcal {A}$
 is a unital C
 $^*$
algebra, then
$^*$
algebra, then 
 ${\mathcal {M}}(\mathcal {A}) \cong \mathcal {A}$
. For a thorough treatment of multipliers we refer to [Reference Pedersen15, Section 3.12].
${\mathcal {M}}(\mathcal {A}) \cong \mathcal {A}$
. For a thorough treatment of multipliers we refer to [Reference Pedersen15, Section 3.12].
Lemma 2.1 Let 
 $\pi _{\mathcal {A}} : \mathcal {A} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 and
$\pi _{\mathcal {A}} : \mathcal {A} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 and 
 $\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})$
 be faithful and nondegenerate
$\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})$
 be faithful and nondegenerate 
 $^*$
-homomorphisms of C
$^*$
-homomorphisms of C
 $^*$
-algebras
$^*$
-algebras 
 $\mathcal {A}$
 and
$\mathcal {A}$
 and 
 $\mathcal {B,}$
 respectively. Then
$\mathcal {B,}$
 respectively. Then 
 $$ \begin{align*} {\mathcal{M}}(\mathcal{A}) \otimes \mathcal{B} = ({\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}}) \otimes \mathcal{B}) \cap {\mathcal{M}}(\mathcal{A} \otimes \mathcal{B}). \end{align*} $$
$$ \begin{align*} {\mathcal{M}}(\mathcal{A}) \otimes \mathcal{B} = ({\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}}) \otimes \mathcal{B}) \cap {\mathcal{M}}(\mathcal{A} \otimes \mathcal{B}). \end{align*} $$
Proof Clearly, 
 ${\mathcal {M}}(\mathcal {A}) \otimes \mathcal {B} \subseteq ({\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}}) \otimes \mathcal {B}) \cap {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
. Hence it suffices to establish the opposite inclusion. For this purpose, we first assume that
${\mathcal {M}}(\mathcal {A}) \otimes \mathcal {B} \subseteq ({\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}}) \otimes \mathcal {B}) \cap {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
. Hence it suffices to establish the opposite inclusion. For this purpose, we first assume that 
 $\mathcal {B}$
 is unital. Let
$\mathcal {B}$
 is unital. Let 
 $x := \sum _{i=1}^n x_i \otimes b_i \in {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
 for operators
$x := \sum _{i=1}^n x_i \otimes b_i \in {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
 for operators 
 $x_1,\ldots ,x_n \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 and linear independent elements
$x_1,\ldots ,x_n \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 and linear independent elements 
 $b_1,\ldots b_n \in \mathcal {B}$
. Moreover, let
$b_1,\ldots b_n \in \mathcal {B}$
. Moreover, let 
 $\psi $
 be a state on
$\psi $
 be a state on 
 $\mathcal {B}$
 such that
$\mathcal {B}$
 such that 
 $\psi (b_i^* b_i)> 0$
 for all
$\psi (b_i^* b_i)> 0$
 for all 
 $1 \le i \le n$
. Applying the Gram–Schmidt process, we may w. l. o. g. assume that
$1 \le i \le n$
. Applying the Gram–Schmidt process, we may w. l. o. g. assume that 
 $\psi (b_i^* b_j) = \delta _{i,j}$
 for all
$\psi (b_i^* b_j) = \delta _{i,j}$
 for all 
 $1 \le i,j \le n$
, i. e.,
$1 \le i,j \le n$
, i. e., 
 $b_1, \dots , b_n$
 is an orthonormal system. We write
$b_1, \dots , b_n$
 is an orthonormal system. We write 
 $\omega _i(b) := \psi (b_i^* b)$
,
$\omega _i(b) := \psi (b_i^* b)$
, 
 $b \in \mathcal {B}$
,
$b \in \mathcal {B}$
, 
 $1 \le i \le n$
, for the corresponding dual system of functionals on
$1 \le i \le n$
, for the corresponding dual system of functionals on 
 $\mathcal {B}$
. Since
$\mathcal {B}$
. Since 
 $x \in {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
, for each
$x \in {\mathcal {M}}(\mathcal {A} \otimes \mathcal {B})$
, for each 
 $a \in \mathcal {A}$
 we have
$a \in \mathcal {A}$
 we have 
 $x(a \otimes 1_{\mathcal {B}}) \in \mathcal {A} \otimes \mathcal {B}$
. Consequently,
$x(a \otimes 1_{\mathcal {B}}) \in \mathcal {A} \otimes \mathcal {B}$
. Consequently, 
 $$ \begin{align*} x_i a = (\operatorname{\mathrm{id}} \otimes \omega_i(x)) a = \operatorname{\mathrm{id}} \otimes \omega_i (x (a \otimes 1_{\mathcal{B}})) \in \mathcal{A} \end{align*} $$
$$ \begin{align*} x_i a = (\operatorname{\mathrm{id}} \otimes \omega_i(x)) a = \operatorname{\mathrm{id}} \otimes \omega_i (x (a \otimes 1_{\mathcal{B}})) \in \mathcal{A} \end{align*} $$
for all 
 $1 \le i \le n$
 and
$1 \le i \le n$
 and 
 $a \in \mathcal {A}$
. Likewise, we find
$a \in \mathcal {A}$
. Likewise, we find 
 $ax_i \in \mathcal {A}$
. It follows that
$ax_i \in \mathcal {A}$
. It follows that 
 $x_i \in {\mathcal {M}}(\mathcal {A})$
 for all
$x_i \in {\mathcal {M}}(\mathcal {A})$
 for all 
 $1 \le i \le n$
, and hence
$1 \le i \le n$
, and hence 
 $x \in {\mathcal {M}}(\mathcal {A}) \otimes \mathcal {B}$
. Taking limits, we thus get
$x \in {\mathcal {M}}(\mathcal {A}) \otimes \mathcal {B}$
. Taking limits, we thus get 
 $$ \begin{align*} \bigl( {\mathcal{L}}({\mathfrak{H}}_A) \otimes \mathcal{B} \bigr) \cap {\mathcal{M}}(\mathcal{A} \otimes \mathcal{B}) \subseteq {\mathcal{M}}(\mathcal{A}) \otimes \mathcal{B.} \end{align*} $$
$$ \begin{align*} \bigl( {\mathcal{L}}({\mathfrak{H}}_A) \otimes \mathcal{B} \bigr) \cap {\mathcal{M}}(\mathcal{A} \otimes \mathcal{B}) \subseteq {\mathcal{M}}(\mathcal{A}) \otimes \mathcal{B.} \end{align*} $$
For non-unital 
 $\mathcal {B}$
 we may replace
$\mathcal {B}$
 we may replace 
 $1_{\mathcal {B}}$
 by an approximate unit of
$1_{\mathcal {B}}$
 by an approximate unit of 
 $\mathcal {B}$
 and use similar arguments, the detailed verification being left to the reader.
$\mathcal {B}$
 and use similar arguments, the detailed verification being left to the reader.
2.3 About coactions of compact groups
 Let G be a locally compact Hausdorff group. We denote by 
 $\lambda : G \to {\mathcal {U}} (L^2(G))$
 the left regular representation given by
$\lambda : G \to {\mathcal {U}} (L^2(G))$
 the left regular representation given by 
 $(\lambda _gf)(h):=f(g^{-1}h)$
 and by
$(\lambda _gf)(h):=f(g^{-1}h)$
 and by 
 $r : G \to {\mathcal {U}} (L^2(G))$
 the right regular representation given by
$r : G \to {\mathcal {U}} (L^2(G))$
 the right regular representation given by 
 $(r_gf)(h):=f(hg)$
. For
$(r_gf)(h):=f(hg)$
. For 
 $f \in C_0(G)$
 we write
$f \in C_0(G)$
 we write 
 $r(f)$
 for the integrated form with respect to the right regular representation and consider
$r(f)$
 for the integrated form with respect to the right regular representation and consider 
 $C^*_r(G)$
 as the norm closure of the
$C^*_r(G)$
 as the norm closure of the 
 $^*$
-algebra
$^*$
-algebra 
 $r(C(G)) \subseteq {\mathcal {L}}(L^2(G))$
 or, equivalently, as the fixed point algebra of
$r(C(G)) \subseteq {\mathcal {L}}(L^2(G))$
 or, equivalently, as the fixed point algebra of 
 ${\mathcal {K}}(L^2(G))$
 under the adjoint action
${\mathcal {K}}(L^2(G))$
 under the adjoint action 
 $\operatorname {\mathrm {Ad}}[\lambda _g]$
,
$\operatorname {\mathrm {Ad}}[\lambda _g]$
, 
 $g\in G$
.
$g\in G$
.
 Usually, we consider 
 $C^*_r(G)$
 as a quantum group with respect to the faithful and nondegenerate
$C^*_r(G)$
 as a quantum group with respect to the faithful and nondegenerate 
 $^*$
-homomorphism
$^*$
-homomorphism 
 $\delta _G: C^*_r(G) \to {\mathcal {M}}(C^*_r(G) \otimes C^*_r(G))$
 defined by the integrated form of the diagonal representation
$\delta _G: C^*_r(G) \to {\mathcal {M}}(C^*_r(G) \otimes C^*_r(G))$
 defined by the integrated form of the diagonal representation 
 $G \ni g \mapsto r_g \otimes r_g \in {\mathcal {U}}(L^2(G) \otimes L^2(G))$
. Due to [Reference Landstad14, p. 255] (see also [Reference Stinespring25, p. 48]), the unitary
$G \ni g \mapsto r_g \otimes r_g \in {\mathcal {U}}(L^2(G) \otimes L^2(G))$
. Due to [Reference Landstad14, p. 255] (see also [Reference Stinespring25, p. 48]), the unitary 
 $W_G$
 on
$W_G$
 on 
 $L^2(G \times G) \cong L^2(G) \otimes L^2(G)$
 defined by
$L^2(G \times G) \cong L^2(G) \otimes L^2(G)$
 defined by 
 $(W_G f)(g,h) := f(g,hg)$
 implements the map
$(W_G f)(g,h) := f(g,hg)$
 implements the map 
 $\delta _G$
 in the sense that
$\delta _G$
 in the sense that 
 $\delta _G(x) = W_G^* \bigl ( x \otimes 1_G \bigr ) W_G$
 for all
$\delta _G(x) = W_G^* \bigl ( x \otimes 1_G \bigr ) W_G$
 for all 
 $x \in C^*_r(G)$
. We shall also utilize the fact that
$x \in C^*_r(G)$
. We shall also utilize the fact that 
 $W_G \in {\mathcal {M}} \bigl ( C_0(G) \otimes C^*_r(G) \bigr )$
 as well as the identities
$W_G \in {\mathcal {M}} \bigl ( C_0(G) \otimes C^*_r(G) \bigr )$
 as well as the identities 
 $$ \begin{align} (W_G)_{23}(W_G)_{12}(W_G)_{13} &= (W_G)_{12}(W_G)_{23}, \end{align} $$
$$ \begin{align} (W_G)_{23}(W_G)_{12}(W_G)_{13} &= (W_G)_{12}(W_G)_{23}, \end{align} $$
 $$ \begin{align} (r_g \otimes 1_G) W_G &= W_G (r_g \otimes r_g) \qquad\qquad\ \forall g \in G, \end{align} $$
$$ \begin{align} (r_g \otimes 1_G) W_G &= W_G (r_g \otimes r_g) \qquad\qquad\ \forall g \in G, \end{align} $$
 $$ \begin{align} (1_G \otimes \lambda_g) W_G &= W_G (1_G \otimes \lambda_g) \qquad\qquad \forall g \in G, \end{align} $$
$$ \begin{align} (1_G \otimes \lambda_g) W_G &= W_G (1_G \otimes \lambda_g) \qquad\qquad \forall g \in G, \end{align} $$
 $$ \begin{align}(\lambda_g \otimes r_g) W_G &= W_G (\lambda_g \otimes 1_G) \qquad\qquad \forall g \in G. \end{align} $$
$$ \begin{align}(\lambda_g \otimes r_g) W_G &= W_G (\lambda_g \otimes 1_G) \qquad\qquad \forall g \in G. \end{align} $$
 More generally, we are concerned with coactions of compact groups on C
 $^*$
-algebras and refer to [Reference Echterhoff, Kaliszewski, Quigg and Raeburn9, Appendix A] for a detailed discussion on the subject. However, for expediency we now repeat the basic definition.
$^*$
-algebras and refer to [Reference Echterhoff, Kaliszewski, Quigg and Raeburn9, Appendix A] for a detailed discussion on the subject. However, for expediency we now repeat the basic definition.
Definition 2.1 A coaction of a locally compact Hausdorff group G on a C
 $^*$
-algebra
$^*$
-algebra 
 $\mathcal {A}$
 is a faithful and nondegenerate
$\mathcal {A}$
 is a faithful and nondegenerate 
 $^*$
-homomorphism
$^*$
-homomorphism 
 $\delta : \mathcal {A} \to {\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 satisfying the coaction identity
$\delta : \mathcal {A} \to {\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 satisfying the coaction identity 
 $$ \begin{align} (\delta \otimes \operatorname{\mathrm{id}}) \circ \delta = (\operatorname{\mathrm{id}} \otimes \delta_G) \circ \delta. \end{align} $$
$$ \begin{align} (\delta \otimes \operatorname{\mathrm{id}}) \circ \delta = (\operatorname{\mathrm{id}} \otimes \delta_G) \circ \delta. \end{align} $$
As coactions take values in multiplier algebras, the coaction identity involves the extensions of the maps 
 $\delta \otimes \operatorname {\mathrm {id}}$
 and
$\delta \otimes \operatorname {\mathrm {id}}$
 and 
 $\operatorname {\mathrm {id}} \otimes \delta _G$
 to the multiplier algebras
$\operatorname {\mathrm {id}} \otimes \delta _G$
 to the multiplier algebras 
 ${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 and
${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 and 
 ${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G) \otimes C^*_r(G))$
 in domain and codomain, respectively.
${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G) \otimes C^*_r(G))$
 in domain and codomain, respectively.
Remark 2.2 Let 
 $\mathbb {G}$
 be a quantum group and let
$\mathbb {G}$
 be a quantum group and let 
 $\mathcal {A}$
 be a C
$\mathcal {A}$
 be a C
 $^*$
-algebra. We wish to mention that in the quantum group literature, a map
$^*$
-algebra. We wish to mention that in the quantum group literature, a map 
 $\delta : \mathcal {A} \to {\mathcal {M}}(\mathcal {A} \otimes C^*_r(\mathbb {G}))$
 satisfying (2.5) is called “a coaction of
$\delta : \mathcal {A} \to {\mathcal {M}}(\mathcal {A} \otimes C^*_r(\mathbb {G}))$
 satisfying (2.5) is called “a coaction of 
 $C^*_r(\mathbb {G})$
 on
$C^*_r(\mathbb {G})$
 on 
 $\mathcal {A}$
” or “a coaction of the dual quantum group
$\mathcal {A}$
” or “a coaction of the dual quantum group 
 $\widehat {\mathbb {G}}$
 on
$\widehat {\mathbb {G}}$
 on 
 $\mathcal {A}$
”.
$\mathcal {A}$
”.
2.4 About free C
 $^*$
-dynamical systems
$^*$
-dynamical systems
 One of the key tools utilized in this article is a characterization of freeness that we previously introduced in [Reference Schwieger and Wagner22, Lemma 3.2], namely that a C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 is free if and only if for each irreducible representation
$(\mathcal {A},G,\alpha )$
 is free if and only if for each irreducible representation 
 $(\sigma ,V_\sigma )$
 of G there exists a finite-dimensional Hilbert space
$(\sigma ,V_\sigma )$
 of G there exists a finite-dimensional Hilbert space 
 ${\mathfrak {H}}_\sigma $
 and an isometry
${\mathfrak {H}}_\sigma $
 and an isometry 
 $s(\sigma ) \in \mathcal {A} \otimes {\mathcal {L}}(V_\sigma ,{\mathfrak {H}}_\sigma )$
 satisfying
$s(\sigma ) \in \mathcal {A} \otimes {\mathcal {L}}(V_\sigma ,{\mathfrak {H}}_\sigma )$
 satisfying 
 $\alpha _g(s(\sigma ))=s(\sigma ) (1_{\mathcal {A}} \otimes \sigma _g)$
 for all
$\alpha _g(s(\sigma ))=s(\sigma ) (1_{\mathcal {A}} \otimes \sigma _g)$
 for all 
 $g \in G$
. However, to simplify notation we patch this family of isometries together and use the following characterization instead.
$g \in G$
. However, to simplify notation we patch this family of isometries together and use the following characterization instead.
Lemma 2.3 (see [Reference Schwieger and Wagner24, Lemma 3.1])
 For a C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $({\mathcal {A}}, G, \alpha )$
 the following statements are equivalent:
$({\mathcal {A}}, G, \alpha )$
 the following statements are equivalent: 
- 
(a)  $(\mathcal {A}, G, \alpha )$
 is free. $(\mathcal {A}, G, \alpha )$
 is free.
- 
(b) There is a unitary representation  $\mu : G \to {\mathcal {U}}({\mathfrak {H}})$
 with finite-dimensional multiplicity spaces and, given any faithful covariant representation $\mu : G \to {\mathcal {U}}({\mathfrak {H}})$
 with finite-dimensional multiplicity spaces and, given any faithful covariant representation $(\pi ,u)$
 of $(\pi ,u)$
 of $(\mathcal {A},G,\alpha )$
 on some Hilbert space $(\mathcal {A},G,\alpha )$
 on some Hilbert space ${\mathfrak {H}}_{\mathcal {A}}$
, an isometry ${\mathfrak {H}}_{\mathcal {A}}$
, an isometry $S \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G), {\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 satisfying (2.6) $S \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G), {\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 satisfying (2.6) $$ \begin{align} \!S {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}),\qquad\qquad \end{align} $$
(2.7) $$ \begin{align} \!S {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}),\qquad\qquad \end{align} $$
(2.7) $$ \begin{align}\quad\qquad (u_g \otimes 1_{\mathfrak{H}}) S &= S (u_g \otimes r_g) && \forall g \in G, \end{align} $$
(2.8) $$ \begin{align}\quad\qquad (u_g \otimes 1_{\mathfrak{H}}) S &= S (u_g \otimes r_g) && \forall g \in G, \end{align} $$
(2.8) $$ \begin{align} \quad\qquad(1_{\mathcal{A}} \otimes \mu_g) S &= S (1_{\mathcal{A}} \otimes \lambda_g) && \forall g \in G. \end{align} $$ $$ \begin{align} \quad\qquad(1_{\mathcal{A}} \otimes \mu_g) S &= S (1_{\mathcal{A}} \otimes \lambda_g) && \forall g \in G. \end{align} $$Here, we do not distinguish between  $\mathcal {A}$
 and $\mathcal {A}$
 and $\pi (\mathcal {A}) \subseteq {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 for sake of brevity. Furthermore, the tensor product $\pi (\mathcal {A}) \subseteq {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}})$
 for sake of brevity. Furthermore, the tensor product $\mathcal {A} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is closed with respect to the operator norm, where $\mathcal {A} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is closed with respect to the operator norm, where ${\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is regarded as the respective corner of ${\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is regarded as the respective corner of ${\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}})$
. ${\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}})$
.
 The adjoint 
 $S^* \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}, {\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G))$
 of the isometry S in Lemma 2.3 satisfies
$S^* \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}, {\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G))$
 of the isometry S in Lemma 2.3 satisfies 
 $S^* \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}},L^2(G))$
 or, equivalently,
$S^* \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}},L^2(G))$
 or, equivalently, 
 $$ \begin{align} {\mathcal{A}} \otimes {\mathcal{K}}({\mathfrak{H}}) S \subseteq {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align} $$
$$ \begin{align} {\mathcal{A}} \otimes {\mathcal{K}}({\mathfrak{H}}) S \subseteq {\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align} $$
For this reason, we can assert that S is, in fact, a multiplier for 
 $\mathcal {A} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}})$
, i. e.,
$\mathcal {A} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}})$
, i. e., 
 $S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}( L^2(G) \oplus {\mathfrak {H}}))$
, with
$S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}( L^2(G) \oplus {\mathfrak {H}}))$
, with 
 $(1_{\mathcal {A}} \otimes p_{L^2(G)}) S = 0 = S (1_{\mathcal {A}} \otimes p_{\mathfrak {H}})$
, where
$(1_{\mathcal {A}} \otimes p_{L^2(G)}) S = 0 = S (1_{\mathcal {A}} \otimes p_{\mathfrak {H}})$
, where 
 $p_{\mathfrak {H}}$
 and
$p_{\mathfrak {H}}$
 and 
 $p_{L^2(G)}$
 denote the canonical projections onto
$p_{L^2(G)}$
 denote the canonical projections onto 
 ${\mathfrak {H}}$
 and
${\mathfrak {H}}$
 and 
 $L^2(G),$
 respectively.
$L^2(G),$
 respectively.
 A particular simple class of free actions is given by so-called cleft actions (see [Reference Schwieger and Wagner21]). Regarded as noncommutative principal bundles, these actions are essentially characterized by the fact that all associated noncommutative vector bundles are trivial. For convenience of the reader we now recall the definition. Indeed, we call a C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $({\mathcal {A}},G,\alpha )$
 cleft if there is a unitary
$({\mathcal {A}},G,\alpha )$
 cleft if there is a unitary 
 $U \in {\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 such that
$U \in {\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 such that 
 $\bar {\alpha }_g(U) = U (1_{\mathcal {A}} \otimes r_g)$
 for all
$\bar {\alpha }_g(U) = U (1_{\mathcal {A}} \otimes r_g)$
 for all 
 $g \in G$
. Here,
$g \in G$
. Here, 
 $\bar {\alpha }_g$
,
$\bar {\alpha }_g$
, 
 $g\in G$
, denotes the strictly continuous extension of
$g\in G$
, denotes the strictly continuous extension of 
 $\alpha _g \otimes 1_G$
,
$\alpha _g \otimes 1_G$
, 
 $g\in G$
, to
$g\in G$
, to 
 ${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 (see, e. g., [Reference Pedersen15, Proposition 3.12.10]), which is continuous for the strict topology. It is clear that each cleft C
${\mathcal {M}}(\mathcal {A} \otimes C^*_r(G))$
 (see, e. g., [Reference Pedersen15, Proposition 3.12.10]), which is continuous for the strict topology. It is clear that each cleft C
 $^*$
-dynamical system is free with a possible choice for
$^*$
-dynamical system is free with a possible choice for 
 $\mu $
 and
$\mu $
 and 
 ${\mathfrak {H}}$
 given by
${\mathfrak {H}}$
 given by 
 $\lambda $
 and
$\lambda $
 and 
 $L^2(G),$
 respectively.
$L^2(G),$
 respectively.
3 The realization
 To commence, we fix a free C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 with fixed point algebra
$(\mathcal {A},G,\alpha )$
 with fixed point algebra 
 $\mathcal {B}$
 along with a faithful covariant representation
$\mathcal {B}$
 along with a faithful covariant representation 
 $(\pi ,u)$
 thereof on some Hilbert space
$(\pi ,u)$
 thereof on some Hilbert space 
 ${\mathfrak {H}}_{\mathcal {A}}$
. By Lemma 2.3, there is a unitary representation
${\mathfrak {H}}_{\mathcal {A}}$
. By Lemma 2.3, there is a unitary representation 
 $\mu : G \to {\mathcal {U}}({\mathfrak {H}})$
 with finite-dimensional multiplicity spaces and an isometry
$\mu : G \to {\mathcal {U}}({\mathfrak {H}})$
 with finite-dimensional multiplicity spaces and an isometry 
 $S \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G), {\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 satisfying (2.6), (2.7), (2.8), and (2.9).
$S \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes L^2(G), {\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 satisfying (2.6), (2.7), (2.8), and (2.9).
 We see at once that 
 $P := SS^* \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 is a projection satisfying
$P := SS^* \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 is a projection satisfying 
 $(u_g \otimes \mu _h) P = P (u_g \otimes \mu _h)$
 for all
$(u_g \otimes \mu _h) P = P (u_g \otimes \mu _h)$
 for all 
 $g,h \in G$
. Moreover, we have
$g,h \in G$
. Moreover, we have 
 $P \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}))$
, which is easily checked. In what follows, the central object of interest is the corresponding corner
$P \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}))$
, which is easily checked. In what follows, the central object of interest is the corresponding corner 
 $$ \begin{align} \mathcal{D} := P ( \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) ) P \subseteq \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \cap P{\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}})P. \end{align} $$
$$ \begin{align} \mathcal{D} := P ( \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) ) P \subseteq \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \cap P{\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}})P. \end{align} $$
Clearly, 
 $\mathcal {D}$
 is pointwise fixed by
$\mathcal {D}$
 is pointwise fixed by 
 $\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
,
$\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
, 
 $g\in G$
. Furthermore,
$g\in G$
. Furthermore, 
 $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
,
$\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, 
 ${g\in G}$
, is a strongly continuous action on
${g\in G}$
, is a strongly continuous action on 
 $\mathcal {D}$
, i. e.,
$\mathcal {D}$
, i. e., 
 $(\mathcal {D},G,\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu ])$
 is a C
$(\mathcal {D},G,\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu ])$
 is a C
 $^*$
-dynamical system. Our first task is to construct a coaction of G on
$^*$
-dynamical system. Our first task is to construct a coaction of G on 
 $\mathcal {D}$
 in terms of S and
$\mathcal {D}$
 in terms of S and 
 $W_G$
 (see Section 2.3). We begin with a series of lemmas.
$W_G$
 (see Section 2.3). We begin with a series of lemmas.
Lemma 3.1 For the element 
 $W_S := S_{12} (W_G)_{23} S_{12}^*$
 in
$W_S := S_{12} (W_G)_{23} S_{12}^*$
 in 
 ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
 the following assertions hold:
${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
 the following assertions hold: 
- 
1.  $W_S$
 is a partial isometry with initial and final projection $W_S$
 is a partial isometry with initial and final projection $P \otimes 1_G$
. $P \otimes 1_G$
.
- 
2.  $(u_g \otimes \mu _h \otimes r_h) W_S = W_S (u_g \otimes \mu _h \otimes r_g)$
 for all $(u_g \otimes \mu _h \otimes r_h) W_S = W_S (u_g \otimes \mu _h \otimes r_g)$
 for all $g,h \in G$
. $g,h \in G$
.
- 
3.  $W_S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
.Footnote 
1 $W_S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
.Footnote 
1
Proof
- 
1. Since S is an isometry, we see at once that the initial and final projections are given by  $W_{S}^* W_S = P \otimes 1_G$
 and $W_{S}^* W_S = P \otimes 1_G$
 and $W_S W_S^* = P \otimes 1_G$
, respectively. $W_S W_S^* = P \otimes 1_G$
, respectively.
- 
2. Let  $g,h \in G$
. Then an easy verification yields $g,h \in G$
. Then an easy verification yields $$ \begin{align*} (u_g \otimes \mu_h \otimes r_h) W_S &= (u_g \otimes \mu_h \otimes r_h) S_{12} (W_G)_{23} S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} (u_g \otimes r_g \lambda_h \otimes r_h) (W_G)_{23} S_{12}^* \\\overset{({2.2}),({2.4})}{=}& S_{12} (W_G)_{23} (u_g \otimes r_g \lambda_h \otimes r_g) S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} (W_G)_{23} S_{12}^* (u_g \otimes \mu_h \otimes r_g) = W_S (u_g \otimes \mu_h \otimes r_g). \end{align*} $$ $$ \begin{align*} (u_g \otimes \mu_h \otimes r_h) W_S &= (u_g \otimes \mu_h \otimes r_h) S_{12} (W_G)_{23} S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} (u_g \otimes r_g \lambda_h \otimes r_h) (W_G)_{23} S_{12}^* \\\overset{({2.2}),({2.4})}{=}& S_{12} (W_G)_{23} (u_g \otimes r_g \lambda_h \otimes r_g) S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} (W_G)_{23} S_{12}^* (u_g \otimes \mu_h \otimes r_g) = W_S (u_g \otimes \mu_h \otimes r_g). \end{align*} $$
- 
3. From (2.6), we deduce that  $S \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}},L^2(G)) \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
. Combining this once more with (2.6) and the fact that $S \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}},L^2(G)) \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
. Combining this once more with (2.6) and the fact that $W_G \in {\mathcal {L}}(L^2(G)) \otimes {\mathcal {L}}(L^2(G))$
 yields $W_G \in {\mathcal {L}}(L^2(G)) \otimes {\mathcal {L}}(L^2(G))$
 yields $$ \begin{align*} W_S \in {\mathcal{M}}({\mathcal{A}} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G))). \end{align*} $$ $$ \begin{align*} W_S \in {\mathcal{M}}({\mathcal{A}} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G))). \end{align*} $$But since  $C^*_r(G)$
 is the fixed point algebra of $C^*_r(G)$
 is the fixed point algebra of ${\mathcal {K}}(L^2(G))$
 under ${\mathcal {K}}(L^2(G))$
 under $\operatorname {\mathrm {Ad}}[\lambda _g]$
, $\operatorname {\mathrm {Ad}}[\lambda _g]$
, $g\in G$
, and $g\in G$
, and $W_G$
 satisfies (2.3), it may further be concluded that $W_G$
 satisfies (2.3), it may further be concluded that $W_S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
. $W_S \in {\mathcal {M}}(\mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
.
 Here and subsequently, we do not distinguish between 
 ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
 and
${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
 and 
 ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) \otimes {\mathcal {L}}(L^2(G))$
 for simplicity of notation.
${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) \otimes {\mathcal {L}}(L^2(G))$
 for simplicity of notation.
Lemma 3.2 For the map
 $$ \begin{align*} \delta: {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}}) \to {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}} \otimes L^2(G)), && \delta(x) : = \operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G) := W_S (x \otimes 1_G) W_S^* \end{align*} $$
$$ \begin{align*} \delta: {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}}) \to {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes {\mathfrak{H}} \otimes L^2(G)), && \delta(x) : = \operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G) := W_S (x \otimes 1_G) W_S^* \end{align*} $$
the following assertions hold:
- 
1.  $\delta $
 is equivariant w.r.t. $\delta $
 is equivariant w.r.t. $\operatorname {\mathrm {Ad}}[u_g \otimes \mu _h]$
, $\operatorname {\mathrm {Ad}}[u_g \otimes \mu _h]$
, $g,h \in G$
 on $g,h \in G$
 on ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 and ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 and $\operatorname {\mathrm {Ad}}[u_g \otimes \mu _h \otimes r_h]$
, $\operatorname {\mathrm {Ad}}[u_g \otimes \mu _h \otimes r_h]$
, $g,h \in G$
, on $g,h \in G$
, on ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
. ${\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}} \otimes L^2(G))$
.
- 
2.  $\delta (x) \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
 for all $\delta (x) \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
 for all $x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
. $x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
.
- 
3.  $\delta $
 satisfies the coaction identity $\delta $
 satisfies the coaction identity $(\delta \otimes \operatorname {\mathrm {id}}) \circ \delta = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta $
. $(\delta \otimes \operatorname {\mathrm {id}}) \circ \delta = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta $
.
Proof
- 
1. Let  $g,h \in G$
 and let $g,h \in G$
 and let $x \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
. Then where we have used Lemma 3.1.2 for the third-to-last equality. $x \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
. Then where we have used Lemma 3.1.2 for the third-to-last equality. $$ \begin{align*} \delta(\operatorname{\mathrm{Ad}}[u_g \otimes \mu_h](x)) &= \operatorname{\mathrm{Ad}}[W_S](\operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes 1_G](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[W_S (u_g \otimes \mu_h \otimes 1_G)](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[W_S (u_g \otimes \mu_h \otimes r_g)](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(u_g \otimes \mu_h \otimes r_h ) W_S](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes r_h ](\operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes r_h] (\delta(x)), \end{align*} $$ $$ \begin{align*} \delta(\operatorname{\mathrm{Ad}}[u_g \otimes \mu_h](x)) &= \operatorname{\mathrm{Ad}}[W_S](\operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes 1_G](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[W_S (u_g \otimes \mu_h \otimes 1_G)](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[W_S (u_g \otimes \mu_h \otimes r_g)](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(u_g \otimes \mu_h \otimes r_h ) W_S](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes r_h ](\operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[u_g \otimes \mu_h \otimes r_h] (\delta(x)), \end{align*} $$
- 
2. Let  $x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 and let $x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 and let $y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Applying Lemma 3.1.3 yields $y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Applying Lemma 3.1.3 yields $\delta (x)y \in \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Moreover, the equivariance of $\delta (x)y \in \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Moreover, the equivariance of $\delta $
 implies that for all $\delta $
 implies that for all $$ \begin{align*} \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](\delta(x)y) &= \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](\delta(x)) \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](y) \\ &= \delta(\operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}}](x)) y = \delta(x)y \end{align*} $$ $$ \begin{align*} \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](\delta(x)y) &= \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](\delta(x)) \operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}} \otimes 1_G](y) \\ &= \delta(\operatorname{\mathrm{Ad}}[u_g \otimes 1_{\mathfrak{H}}](x)) y = \delta(x)y \end{align*} $$ $g \in G$
, i. e., $g \in G$
, i. e., $\delta (x)y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Likewise, we obtain $\delta (x)y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Likewise, we obtain $y\delta (x) \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. It follows that $y\delta (x) \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. It follows that $\delta (x) \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
 as required. $\delta (x) \in {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G))$
 as required.
- 
3. To demonstrate that  $(\delta \otimes \operatorname {\mathrm {id}}) \circ \delta = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta $
, we first evaluate both sides of the identity. Indeed, for each $(\delta \otimes \operatorname {\mathrm {id}}) \circ \delta = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta $
, we first evaluate both sides of the identity. Indeed, for each $x \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 we have $x \in {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
 we have $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} (\delta(x)) &= \delta \otimes \operatorname{\mathrm{id}} (\operatorname{\mathrm{Ad}}[W_S] (x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[(W_S)_{123}(W_S)_{124}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[S_{12}(W_G)_{23}(W_G)_{24} S_{12}^*](x \otimes 1_G). \end{align*} $$ $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} (\delta(x)) &= \delta \otimes \operatorname{\mathrm{id}} (\operatorname{\mathrm{Ad}}[W_S] (x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[(W_S)_{123}(W_S)_{124}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[S_{12}(W_G)_{23}(W_G)_{24} S_{12}^*](x \otimes 1_G). \end{align*} $$Moreover, the right hand side of the identity becomes  $$ \begin{align*} \operatorname{\mathrm{id}} \otimes \delta_G (\delta(x)) &= \operatorname{\mathrm{id}} \otimes \delta_G (\operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*(W_S)_{123}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*(W_S)_{123}(W_G)_{34}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*S_{12}(W_G)_{23}S_{12}^*(W_G)_{34}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[S_{12}(W_G)_{34}^*(W_G)_{23}(W_G)_{34}S_{12}^*](x \otimes 1_G). \end{align*} $$ $$ \begin{align*} \operatorname{\mathrm{id}} \otimes \delta_G (\delta(x)) &= \operatorname{\mathrm{id}} \otimes \delta_G (\operatorname{\mathrm{Ad}}[W_S](x \otimes 1_G)) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*(W_S)_{123}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*(W_S)_{123}(W_G)_{34}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[(W_G)_{34}^*S_{12}(W_G)_{23}S_{12}^*(W_G)_{34}](x \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[S_{12}(W_G)_{34}^*(W_G)_{23}(W_G)_{34}S_{12}^*](x \otimes 1_G). \end{align*} $$Comparing these two expressions, we see that the claim will be proved once we show that  $(W_G)_{12}(W_G)_{13} = (W_G)_{23}^*(W_G)_{12}(W_G)_{23}$
. But this is clear from (2.1). $(W_G)_{12}(W_G)_{13} = (W_G)_{23}^*(W_G)_{12}(W_G)_{23}$
. But this is clear from (2.1).
Remark 3.3 We stress that the map 
 $\delta $
 is, in general, not a
$\delta $
 is, in general, not a 
 $^*$
-homomorphism.
$^*$
-homomorphism.
 To proceed, we put 
 ${\mathfrak {H}}_P := P ({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
, identify
${\mathfrak {H}}_P := P ({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}})$
, identify 
 ${\mathcal {L}}({\mathfrak {H}}_P)$
 with
${\mathcal {L}}({\mathfrak {H}}_P)$
 with 
 $P {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) P$
 by means of the map
$P {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) P$
 by means of the map 
 $P {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) P \to {\mathcal {L}}({\mathfrak {H}}_P)$
,
$P {\mathcal {L}}({\mathfrak {H}}_{\mathcal {A}} \otimes {\mathfrak {H}}) P \to {\mathcal {L}}({\mathfrak {H}}_P)$
, 
 $x \mapsto x |_{{\mathfrak {H}}_P}^{{\mathfrak {H}}_P}$
, and note that
$x \mapsto x |_{{\mathfrak {H}}_P}^{{\mathfrak {H}}_P}$
, and note that 
 $\mathcal {D} \subseteq {\mathcal {L}}({\mathfrak {H}}_P)$
 is nondegenerate.
$\mathcal {D} \subseteq {\mathcal {L}}({\mathfrak {H}}_P)$
 is nondegenerate.
Lemma 3.4 Restricting 
 $\delta $
 to
$\delta $
 to 
 ${\mathcal {D}}$
 (see (3.1)) yields a map
${\mathcal {D}}$
 (see (3.1)) yields a map 
 $$ \begin{align} \delta_{\mathcal{D}} : {\mathcal{D}} \rightarrow {\mathcal{M}}({\mathcal{D}} \otimes C^*_r(G)) \subseteq {\mathcal{L}}({\mathfrak{H}}_P \otimes L^2(G)), \end{align} $$
$$ \begin{align} \delta_{\mathcal{D}} : {\mathcal{D}} \rightarrow {\mathcal{M}}({\mathcal{D}} \otimes C^*_r(G)) \subseteq {\mathcal{L}}({\mathfrak{H}}_P \otimes L^2(G)), \end{align} $$
for which the following assertions hold:
- 
1.  $\delta _{\mathcal {D}}$
 is a $\delta _{\mathcal {D}}$
 is a $^*$
-homomorphism. $^*$
-homomorphism.
- 
2.  $\delta _{\mathcal {D}}$
 is faithful. $\delta _{\mathcal {D}}$
 is faithful.
- 
3.  $\delta _{\mathcal {D}}$
 is nondegenerate. $\delta _{\mathcal {D}}$
 is nondegenerate.
- 
4.  $\delta _{\mathcal {D}}$
 satisfies the coaction identity $\delta _{\mathcal {D}}$
 satisfies the coaction identity $(\delta _{\mathcal {D}} \otimes \operatorname {\mathrm {id}}) \circ \delta _{\mathcal {D}} = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta _{\mathcal {D}}$
. $(\delta _{\mathcal {D}} \otimes \operatorname {\mathrm {id}}) \circ \delta _{\mathcal {D}} = (\operatorname {\mathrm {id}} \otimes \delta _G) \circ \delta _{\mathcal {D}}$
.
- 
5.  $\delta _{\mathcal {D}}$
 is equivariant w.r.t. $\delta _{\mathcal {D}}$
 is equivariant w.r.t. $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, $g\in G$
, on $g\in G$
, on ${\mathcal {D}}$
 and ${\mathcal {D}}$
 and $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
, $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
, $g\in G$
, on $g\in G$
, on ${\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
. ${\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
.
Proof
- 
0. We first show that  $\delta _{\mathcal {D}}$
 is well defined. For this purpose, let $\delta _{\mathcal {D}}$
 is well defined. For this purpose, let ${x=PyP \in \mathcal {D}}$
 for some ${x=PyP \in \mathcal {D}}$
 for some $y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 and let $y \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 and let $z \in {\mathcal {D}} \otimes C^*_r(G) \subseteq \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. By Lemma 3.2.2, $z \in {\mathcal {D}} \otimes C^*_r(G) \subseteq \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. By Lemma 3.2.2, $\delta (y) z \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Moreover, $\delta (y) z \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}}) \otimes C^*_r(G)$
. Moreover, $$ \begin{align*} \delta(x)z = (P \otimes 1_G) \delta(y) (P \otimes 1_G) z = (P \otimes 1_G) \delta(y) z (P \otimes 1_G). \end{align*} $$ $$ \begin{align*} \delta(x)z = (P \otimes 1_G) \delta(y) (P \otimes 1_G) z = (P \otimes 1_G) \delta(y) z (P \otimes 1_G). \end{align*} $$Consequently,  $$ \begin{align*} \delta(x)z \in (P \otimes 1_G) \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes C^*_r(G) (P \otimes 1_G) = {\mathcal{D}} \otimes C^*_r(G). \end{align*} $$ $$ \begin{align*} \delta(x)z \in (P \otimes 1_G) \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes C^*_r(G) (P \otimes 1_G) = {\mathcal{D}} \otimes C^*_r(G). \end{align*} $$Because the same conclusion can be drawn for the element  $z\delta (x)$
, it follows that $z\delta (x)$
, it follows that $\delta (x) \in {\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
. $\delta (x) \in {\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
.
- 
1. It is immediate that  $\delta _{\mathcal {D}}$
 is a $\delta _{\mathcal {D}}$
 is a $^*$
-map. To see that $^*$
-map. To see that $\delta _{\mathcal {D}}$
 is an algebra map, let $\delta _{\mathcal {D}}$
 is an algebra map, let $x,y \in {\mathcal {D}}$
. Then $x,y \in {\mathcal {D}}$
. Then $$ \begin{align*} \delta_{{\mathcal{D}}}(xy) &= W_S (xy \otimes 1_G ) W_S^* = W_S (xPy \otimes 1_G ) W_S^* \\ &= W_S (x \otimes 1_G) (P \otimes 1_G) (y \otimes 1_G ) W_S^* \\ &=\underbrace{W_S (x \otimes 1_G) W_S^*}_{=\delta_{{\mathcal{D}}}(x)} \underbrace{W_S (y \otimes 1_G ) W_S^*}_{=\delta_{{\mathcal{D}}}(y)}. \end{align*} $$ $$ \begin{align*} \delta_{{\mathcal{D}}}(xy) &= W_S (xy \otimes 1_G ) W_S^* = W_S (xPy \otimes 1_G ) W_S^* \\ &= W_S (x \otimes 1_G) (P \otimes 1_G) (y \otimes 1_G ) W_S^* \\ &=\underbrace{W_S (x \otimes 1_G) W_S^*}_{=\delta_{{\mathcal{D}}}(x)} \underbrace{W_S (y \otimes 1_G ) W_S^*}_{=\delta_{{\mathcal{D}}}(y)}. \end{align*} $$
- 
2. Let  $x \in {\mathcal {D}}$
 such that $x \in {\mathcal {D}}$
 such that $\delta (x) =0$
. Multiplying the latter equation by $\delta (x) =0$
. Multiplying the latter equation by $W_S^*$
 from the left and by $W_S^*$
 from the left and by $W_S$
 from the right gives $W_S$
 from the right gives $PxP \otimes 1_G = x \otimes 1_G = 0$
. Hence $PxP \otimes 1_G = x \otimes 1_G = 0$
. Hence $x=0$
 as required. $x=0$
 as required.
- 
3. Let  $\{ T_i \}$
 be a bounded approximate identity for $\{ T_i \}$
 be a bounded approximate identity for ${\mathcal {K}}({\mathfrak {H}})$
. Then ${\mathcal {K}}({\mathfrak {H}})$
. Then $\{\delta (P(1_{\mathcal {B}} \otimes T_i)P)\}$
 is a bounded approximate identity for $\{\delta (P(1_{\mathcal {B}} \otimes T_i)P)\}$
 is a bounded approximate identity for ${\mathcal {D}} \otimes C^*_r(G)$
, i. e., ${\mathcal {D}} \otimes C^*_r(G)$
, i. e., $\delta (P(1_{\mathcal {B}} \otimes T_i)P)$
 converges to $\delta (P(1_{\mathcal {B}} \otimes T_i)P)$
 converges to $1$
 in the strict topology of $1$
 in the strict topology of ${\mathcal {M}} ({\mathcal {D}} \otimes C^*_r(G))$
. In particular, ${\mathcal {M}} ({\mathcal {D}} \otimes C^*_r(G))$
. In particular, $\delta ({\mathcal {D}}) ({\mathcal {D}} \otimes C^*_r(G))$
 is dense in $\delta ({\mathcal {D}}) ({\mathcal {D}} \otimes C^*_r(G))$
 is dense in ${\mathcal {D}} \otimes C^*_r(G)$
 which amounts to saying that ${\mathcal {D}} \otimes C^*_r(G)$
 which amounts to saying that $\delta _{\mathcal {D}}$
 is nondegenerate. As a matter of fact, we even have equality by the Cohen factorization theorem (see, e. g., [Reference Raeburn and Williams18, Proposition 2.33]). $\delta _{\mathcal {D}}$
 is nondegenerate. As a matter of fact, we even have equality by the Cohen factorization theorem (see, e. g., [Reference Raeburn and Williams18, Proposition 2.33]).
- 
4. Since  $\delta _{\mathcal {D}}$
 is nondegenerate, $\delta _{\mathcal {D}}$
 is nondegenerate, $\delta _D \otimes \operatorname {\mathrm {id}} : \mathcal {D} \otimes C^*_r(G) \to {\mathcal {M}}(\mathcal {D} \otimes C^*_r(G) \otimes C^*_r(G))$
 uniquely extends to a $\delta _D \otimes \operatorname {\mathrm {id}} : \mathcal {D} \otimes C^*_r(G) \to {\mathcal {M}}(\mathcal {D} \otimes C^*_r(G) \otimes C^*_r(G))$
 uniquely extends to a $^*$
-homomorphisms with domain $^*$
-homomorphisms with domain ${\mathcal {M}}(\mathcal {D} \otimes C^*_r(G))$
 which, by uniqueness, must agree with the restriction–corestriction ${\mathcal {M}}(\mathcal {D} \otimes C^*_r(G))$
 which, by uniqueness, must agree with the restriction–corestriction $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} \restriction_{{\mathcal{M}}(\mathcal{D} \otimes C^*_r(G))}^{{\mathcal{M}}(\mathcal{D} \otimes C^*_r(G) \otimes C^*_r(G))}. \end{align*} $$ $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} \restriction_{{\mathcal{M}}(\mathcal{D} \otimes C^*_r(G))}^{{\mathcal{M}}(\mathcal{D} \otimes C^*_r(G) \otimes C^*_r(G))}. \end{align*} $$This establishes the statement when combined with Lemma 3.2.3 
- 
5. By Lemma 3.2.1, it suffices to note that  $\mathcal {D}$
 is invariant under $\mathcal {D}$
 is invariant under $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, $g\in G$
, and that $g\in G$
, and that ${\mathcal {M}}(\mathcal {D} \otimes C^*_r(G))$
 is invariant under ${\mathcal {M}}(\mathcal {D} \otimes C^*_r(G))$
 is invariant under $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
, $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
, $g\in G$
. $g\in G$
.
Remark 3.5 Much the same proof as above also works for the restriction of 
 $\delta $
 to
$\delta $
 to 
 ${\mathcal {L}}({\mathfrak {H}}_P)$
 in domain and codomain, i. e., the map
${\mathcal {L}}({\mathfrak {H}}_P)$
 in domain and codomain, i. e., the map 
 ${\mathcal {L}}({\mathfrak {H}}_P) \to {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G))$
,
${\mathcal {L}}({\mathfrak {H}}_P) \to {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G))$
, 
 $x \mapsto \delta (x)$
.
$x \mapsto \delta (x)$
.
Corollary 3.6 
 $\delta _{\mathcal {D}}$
 is a coaction of G on
$\delta _{\mathcal {D}}$
 is a coaction of G on 
 $\mathcal {D}$
 that is equivariant w.r.t.
$\mathcal {D}$
 that is equivariant w.r.t. 
 $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
,
$\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g]$
, 
 $g\in G$
, on
$g\in G$
, on 
 ${\mathcal {D}}$
 and
${\mathcal {D}}$
 and 
 $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
,
$\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g \otimes r_g]$
, 
 $g\in G$
, on
$g\in G$
, on 
 ${\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
.
${\mathcal {M}}({\mathcal {D}} \otimes C^*_r(G))$
.
 The task is now to recover 
 $(\mathcal {A},G,\alpha )$
 from
$(\mathcal {A},G,\alpha )$
 from 
 $\delta _{\mathcal {D}}$
. For this purpose, we recall that
$\delta _{\mathcal {D}}$
. For this purpose, we recall that 
 ${\mathcal {M}}(\mathcal {D})$
 may be identified with
${\mathcal {M}}(\mathcal {D})$
 may be identified with 
 $P {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})) P$
 (see [Reference Blackadar3, Section II.7.3.14]) and consider
$P {\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})) P$
 (see [Reference Blackadar3, Section II.7.3.14]) and consider 
 $\delta _{\mathcal {D}}$
’s fixed point algebra:
$\delta _{\mathcal {D}}$
’s fixed point algebra: 
 $$ \begin{align*} \text{Fix}(\delta_{\mathcal{D}}) := \{ x \in {\mathcal{M}}(\mathcal{D}) : \delta_{\mathcal{D}}(x) = x \otimes 1_G \} \subseteq {\mathcal{L}}({\mathfrak{H}}_P). \end{align*} $$
$$ \begin{align*} \text{Fix}(\delta_{\mathcal{D}}) := \{ x \in {\mathcal{M}}(\mathcal{D}) : \delta_{\mathcal{D}}(x) = x \otimes 1_G \} \subseteq {\mathcal{L}}({\mathfrak{H}}_P). \end{align*} $$
Since 
 $P \in {\mathcal {M}}(\mathcal {D})$
 and
$P \in {\mathcal {M}}(\mathcal {D})$
 and 
 $\delta _{\mathcal {D}}(P) = P \otimes 1_G$
, we see that
$\delta _{\mathcal {D}}(P) = P \otimes 1_G$
, we see that 
 $\text {Fix}(\delta _{\mathcal {D}})$
 is a unital C
$\text {Fix}(\delta _{\mathcal {D}})$
 is a unital C
 $^*$
-subalgebra of
$^*$
-subalgebra of 
 ${\mathcal {M}}(\mathcal {D})$
. Furthermore,
${\mathcal {M}}(\mathcal {D})$
. Furthermore, 
 $\text {Fix}(\delta _{\mathcal {D}})$
 is invariant under
$\text {Fix}(\delta _{\mathcal {D}})$
 is invariant under 
 $\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
,
$\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
, 
 $g\in G$
, as is easy to check. Unfortunately, the resulting action
$g\in G$
, as is easy to check. Unfortunately, the resulting action 
 $G \to \operatorname {\mathrm {Aut}}(\text {Fix}(\delta _{\mathcal {D}}))$
 is unlikely to be continuous for the norm topology on
$G \to \operatorname {\mathrm {Aut}}(\text {Fix}(\delta _{\mathcal {D}}))$
 is unlikely to be continuous for the norm topology on 
 ${\mathcal {M}}(\mathcal {D})$
. The best we can do is say that it is continuous for the strict topology. This inconvenience can be avoided by only taking into account those elements
${\mathcal {M}}(\mathcal {D})$
. The best we can do is say that it is continuous for the strict topology. This inconvenience can be avoided by only taking into account those elements 
 $x \in \text {Fix}(\delta _{\mathcal {D}})$
 for which the map
$x \in \text {Fix}(\delta _{\mathcal {D}})$
 for which the map 
 $G \to \text {Fix}(\delta _{\mathcal {D}})$
,
$G \to \text {Fix}(\delta _{\mathcal {D}})$
, 
 $g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g](x)$
 is norm continuous, i. e.,
$g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g](x)$
 is norm continuous, i. e., 
 $$ \begin{align*} \tilde{\mathcal{A}} := \{ x \in \text{Fix}(\delta_{\mathcal{D}}) : G \ni g \mapsto \operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \mu_g](x) \in \text{Fix}(\delta_{\mathcal{D}}) \,\,\, \text{norm continuous} \}. \end{align*} $$
$$ \begin{align*} \tilde{\mathcal{A}} := \{ x \in \text{Fix}(\delta_{\mathcal{D}}) : G \ni g \mapsto \operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \mu_g](x) \in \text{Fix}(\delta_{\mathcal{D}}) \,\,\, \text{norm continuous} \}. \end{align*} $$
Now, a straightforward verification shows that 
 $\tilde {\mathcal {A}}$
 is a unital C
$\tilde {\mathcal {A}}$
 is a unital C
 $^*$
-subalgebra of
$^*$
-subalgebra of 
 $\text {Fix}(\delta _{\mathcal {D}})$
 with unit
$\text {Fix}(\delta _{\mathcal {D}})$
 with unit 
 $1_{\tilde {\mathcal {A}}} := P$
 on which
$1_{\tilde {\mathcal {A}}} := P$
 on which 
 $\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
,
$\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
, 
 $g \in G$
, acts strongly continuous. In particular, writing
$g \in G$
, acts strongly continuous. In particular, writing 
 $\tilde {\alpha }_g$
,
$\tilde {\alpha }_g$
, 
 $g \in G$
, for the restriction of
$g \in G$
, for the restriction of 
 $\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
,
$\operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g]$
, 
 $g \in G$
, to
$g \in G$
, to 
 $\tilde {\mathcal {A}}$
 in both domain and codomain, we conclude that
$\tilde {\mathcal {A}}$
 in both domain and codomain, we conclude that 
 $(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is a concrete C
$(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is a concrete C
 $^*$
-dynamical system on
$^*$
-dynamical system on 
 ${\mathfrak {H}}_P$
.
${\mathfrak {H}}_P$
.
Lemma 3.7 For the element 
 $\tilde {S} := S_{12} S_{13} (W_G)_{23}^* S_{12}^* \in {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G), {\mathfrak {H}}_P \otimes {\mathfrak {H}})$
 the following assertions hold:
$\tilde {S} := S_{12} S_{13} (W_G)_{23}^* S_{12}^* \in {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G), {\mathfrak {H}}_P \otimes {\mathfrak {H}})$
 the following assertions hold: 
- 
1.  $\tilde {S}$
 is an isometry satisfying $\tilde {S}$
 is an isometry satisfying $\delta \otimes \operatorname {\mathrm {id}} (\tilde {S}) = \tilde {S}_{124}$
. $\delta \otimes \operatorname {\mathrm {id}} (\tilde {S}) = \tilde {S}_{124}$
.
- 
2.  $(u_g \otimes \mu _h \otimes \mu _k) \tilde {S} = \tilde {S} (u_g \otimes \mu _h \otimes r_h \lambda _k)$
 for all $(u_g \otimes \mu _h \otimes \mu _k) \tilde {S} = \tilde {S} (u_g \otimes \mu _h \otimes r_h \lambda _k)$
 for all $g,h,k \in G$
. $g,h,k \in G$
.
- 
3.  $\tilde {S} \mathcal {D} \otimes {\mathcal {K}}(L^2(G)) \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 and $\tilde {S} \mathcal {D} \otimes {\mathcal {K}}(L^2(G)) \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 and $\mathcal {D} \otimes {\mathcal {K}}({\mathfrak {H}}) \tilde {S} \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, i.e., $\mathcal {D} \otimes {\mathcal {K}}({\mathfrak {H}}) \tilde {S} \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, i.e., $\tilde {S} \in {\mathcal {M}}(\mathcal {D} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}}))$
 such that $\tilde {S} \in {\mathcal {M}}(\mathcal {D} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}}))$
 such that $(1_{{\mathfrak {H}}_P} \otimes p_{L^2(G)}) \tilde {S} = 0 = \tilde {S} (1_{{\mathfrak {H}}_P} \otimes p_{{\mathfrak {H}}})$
, where $(1_{{\mathfrak {H}}_P} \otimes p_{L^2(G)}) \tilde {S} = 0 = \tilde {S} (1_{{\mathfrak {H}}_P} \otimes p_{{\mathfrak {H}}})$
, where $p_{{\mathfrak {H}}}$
 and $p_{{\mathfrak {H}}}$
 and $p_{L^2(G)}$
 denote the canonical projections onto $p_{L^2(G)}$
 denote the canonical projections onto ${\mathfrak {H}}$
 and ${\mathfrak {H}}$
 and $L^2(G)$
, respectively (see the discussion below Lemma 2.3). $L^2(G)$
, respectively (see the discussion below Lemma 2.3).
- 
4.  $\tilde {S} {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G)) \subseteq {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
. $\tilde {S} {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G)) \subseteq {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
.
Proof
- 
1. We have  $\tilde {S}^*\tilde {S} = S_{12} (W_G)_{23} S_{13}^* S_{12}^* S_{12} S_{13} (W_G)_{23}^* S_{12}^* = S_{12} S_{12}^* = 1_{\tilde {\mathcal {A}}} \otimes 1_G$
, i. e., $\tilde {S}^*\tilde {S} = S_{12} (W_G)_{23} S_{13}^* S_{12}^* S_{12} S_{13} (W_G)_{23}^* S_{12}^* = S_{12} S_{12}^* = 1_{\tilde {\mathcal {A}}} \otimes 1_G$
, i. e., $\tilde {S}$
 is an isometry. Furthermore, it is easily deduced that where the second-to-last equality is due to the fact that $\tilde {S}$
 is an isometry. Furthermore, it is easily deduced that where the second-to-last equality is due to the fact that $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} (\tilde{S}) &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^*] (\tilde{S}_{124}) \\ &=S_{12} (W_G)_{23} S_{12}^* S_{12} S_{14} (W_G)_{24}^* S_{12}^* S_{12} (W_G)_{23}^* S_{12}^* \\ &= S_{12} S_{14} (W_G)_{23} (W_G)_{24}^* (W_G)_{23}^* S_{12}^* \\ &= S_{12} S_{14} (W_G)_{24}^* S_{12}^* = \tilde{S}_{124}, \end{align*} $$ $$ \begin{align*} \delta \otimes \operatorname{\mathrm{id}} (\tilde{S}) &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^*] (\tilde{S}_{124}) \\ &=S_{12} (W_G)_{23} S_{12}^* S_{12} S_{14} (W_G)_{24}^* S_{12}^* S_{12} (W_G)_{23}^* S_{12}^* \\ &= S_{12} S_{14} (W_G)_{23} (W_G)_{24}^* (W_G)_{23}^* S_{12}^* \\ &= S_{12} S_{14} (W_G)_{24}^* S_{12}^* = \tilde{S}_{124}, \end{align*} $$ $W_G \in L^\infty (G) \otimes {\mathcal {L}}(L^2(G))$
. $W_G \in L^\infty (G) \otimes {\mathcal {L}}(L^2(G))$
.
- 
2. Let  $g,h,k \in G$
. Then $g,h,k \in G$
. Then $$ \begin{align*} (u_g \otimes \mu_h \otimes \mu_k) \tilde{S} &= (u_g \otimes \mu_h \otimes \mu_k) S_{12} S_{13} (W_G)_{23}^* S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} S_{13} (u_g \otimes r_g \lambda_h \otimes r_g \lambda_k) (W_G)_{23}^* S_{12}^* \\\overset{({2.2}),({2.3}),({2.4})}{=}& S_{12} S_{13} (W_G)_{23}^* (u_g \otimes r_g \lambda_h \otimes r_h \lambda_k) S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} S_{13} (W_G)_{23}^* S_{12}^* (u_g \otimes \mu_h \otimes r_h \lambda_k) = \tilde{S} (u_g \otimes \mu_h \otimes r_h \lambda_k). \end{align*} $$ $$ \begin{align*} (u_g \otimes \mu_h \otimes \mu_k) \tilde{S} &= (u_g \otimes \mu_h \otimes \mu_k) S_{12} S_{13} (W_G)_{23}^* S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} S_{13} (u_g \otimes r_g \lambda_h \otimes r_g \lambda_k) (W_G)_{23}^* S_{12}^* \\\overset{({2.2}),({2.3}),({2.4})}{=}& S_{12} S_{13} (W_G)_{23}^* (u_g \otimes r_g \lambda_h \otimes r_h \lambda_k) S_{12}^* \\\overset{({2.7}),({2.8})}{=}& S_{12} S_{13} (W_G)_{23}^* S_{12}^* (u_g \otimes \mu_h \otimes r_h \lambda_k) = \tilde{S} (u_g \otimes \mu_h \otimes r_h \lambda_k). \end{align*} $$
- 
3. Using successively the identity  $\tilde {S} = S_{12} S_{13} S_{12}^* W_S^*$
, the inclusion $\tilde {S} = S_{12} S_{13} S_{12}^* W_S^*$
, the inclusion $\mathcal {D} \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
, Lemma 3.1.3, and three times (2.6) yields $\mathcal {D} \subseteq \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
, Lemma 3.1.3, and three times (2.6) yields $$ \begin{align*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) &= S_{12} S_{13} S_{12}^* W_S\mathcal{D} \otimes {\mathcal{K}}(L^2(G)) \\ &\subseteq S_{12} S_{13} S_{12}^* \mathcal{A} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G)) \\ &\subseteq \mathcal{A} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align*} $$ $$ \begin{align*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) &= S_{12} S_{13} S_{12}^* W_S\mathcal{D} \otimes {\mathcal{K}}(L^2(G)) \\ &\subseteq S_{12} S_{13} S_{12}^* \mathcal{A} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G)) \\ &\subseteq \mathcal{A} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align*} $$As  $(u_g \otimes 1_{\mathfrak {H}} \otimes 1_{\mathfrak {H}}) \tilde {S} x= \tilde {S} x (u_g \otimes 1_{\mathfrak {H}} \otimes 1_G)$
 for all $(u_g \otimes 1_{\mathfrak {H}} \otimes 1_{\mathfrak {H}}) \tilde {S} x= \tilde {S} x (u_g \otimes 1_{\mathfrak {H}} \otimes 1_G)$
 for all $g \in G$
 and $g \in G$
 and $x \in \mathcal {D} \otimes {\mathcal {K}}(L^2(G))$
, which is due to the second part of the lemma and the fact that $x \in \mathcal {D} \otimes {\mathcal {K}}(L^2(G))$
, which is due to the second part of the lemma and the fact that $\mathcal {D}$
 is fixed under $\mathcal {D}$
 is fixed under $\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
, $\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
, $g \in G$
, we further conclude that and hence that $g \in G$
, we further conclude that and hence that $$ \begin{align*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) \subseteq \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}), \end{align*} $$ $$ \begin{align*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) \subseteq \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}), \end{align*} $$ $$ \begin{gather*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) = (P)_{12} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) (P)_{12} \\ \subseteq (P)_{12} \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}) (P)_{12} = \mathcal{D} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{gather*} $$ $$ \begin{gather*} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) = (P)_{12} \tilde{S} \mathcal{D} \otimes {\mathcal{K}}(L^2(G)) (P)_{12} \\ \subseteq (P)_{12} \mathcal{B} \otimes {\mathcal{K}}({\mathfrak{H}}) \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}) (P)_{12} = \mathcal{D} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{gather*} $$In the same manner, we can see that  $\mathcal {D} \otimes {\mathcal {K}}({\mathfrak {H}}) \tilde {S} \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
. From this it follows that $\mathcal {D} \otimes {\mathcal {K}}({\mathfrak {H}}) \tilde {S} \subseteq \mathcal {D} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
. From this it follows that $\tilde {S} \in {\mathcal {M}}(\mathcal {D} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}}))$
 such that $\tilde {S} \in {\mathcal {M}}(\mathcal {D} \otimes {\mathcal {K}}(L^2(G) \oplus {\mathfrak {H}}))$
 such that $(1_{{\mathfrak {H}}_P} \otimes p_{L^2(G)}) S = 0 =S (1_{{\mathfrak {H}}_P} \otimes p_{\mathfrak {H}})$
 as claimed. $(1_{{\mathfrak {H}}_P} \otimes p_{L^2(G)}) S = 0 =S (1_{{\mathfrak {H}}_P} \otimes p_{\mathfrak {H}})$
 as claimed.
- 
4. This is clear from Lemma 2.1, because by the third part of the lemma. $$ \begin{align*} \tilde{S} {\mathcal{M}}(D) \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{L}}({\mathfrak{H}}_P) \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})\\ &\mathrm{and}\\ \tilde{S} {\mathcal{M}}(D) \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) \\ &\subseteq {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) \end{align*} $$ $$ \begin{align*} \tilde{S} {\mathcal{M}}(D) \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{L}}({\mathfrak{H}}_P) \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})\\ &\mathrm{and}\\ \tilde{S} {\mathcal{M}}(D) \otimes {\mathcal{K}}(L^2(G)) &\subseteq {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) \\ &\subseteq {\mathcal{M}}(\mathcal{D} \otimes {\mathcal{K}}(L^2(G) \oplus {\mathfrak{H}})) \end{align*} $$
Corollary 3.8 The C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is free.
$(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is free.
Proof Our strategy of proof is to apply Lemma 2.3. Due to the first two statements of Lemma 3.7, we can already assert that 
 $\tilde {S} \in {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G), {\mathfrak {H}}_P \otimes {\mathfrak {H}})$
 is an isometry satisfying (2.7) and (2.8). What is left is to establish that
$\tilde {S} \in {\mathcal {L}}({\mathfrak {H}}_P \otimes L^2(G), {\mathfrak {H}}_P \otimes {\mathfrak {H}})$
 is an isometry satisfying (2.7) and (2.8). What is left is to establish that 
 $$ \begin{align*} \tilde{S} \tilde{\mathcal{A}} \otimes {\mathcal{K}}(L^2(G)) \subseteq \tilde{\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align*} $$
$$ \begin{align*} \tilde{S} \tilde{\mathcal{A}} \otimes {\mathcal{K}}(L^2(G)) \subseteq \tilde{\mathcal{A}} \otimes {\mathcal{K}}(L^2(G),{\mathfrak{H}}). \end{align*} $$
For this purpose, let 
 $x \in \tilde {\mathcal {A}} \otimes {\mathcal {K}}(L^2(G))$
. By Lemma 3.7, we have
$x \in \tilde {\mathcal {A}} \otimes {\mathcal {K}}(L^2(G))$
. By Lemma 3.7, we have 
 $\tilde {S} x \in {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, and hence we may apply the map
$\tilde {S} x \in {\mathcal {M}}(\mathcal {D}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, and hence we may apply the map 
 $\delta _{\mathcal {D}} \otimes \operatorname {\mathrm {id}}$
 which gives
$\delta _{\mathcal {D}} \otimes \operatorname {\mathrm {id}}$
 which gives 
 $$ \begin{align*} \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (\tilde{S} x) = \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (\tilde{S}) \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (x) = \tilde{S}_{124} x_{124} = (\tilde{S} x)_{124} \end{align*} $$
$$ \begin{align*} \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (\tilde{S} x) = \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (\tilde{S}) \delta_{\mathcal{D}} \otimes \operatorname{\mathrm{id}} (x) = \tilde{S}_{124} x_{124} = (\tilde{S} x)_{124} \end{align*} $$
when combined with Lemma 3.7.1 That is, 
 $\tilde {S} x \in \text {Fix}(\delta _{\mathcal {D}}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
. To see that, in fact,
$\tilde {S} x \in \text {Fix}(\delta _{\mathcal {D}}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
. To see that, in fact, 
 $\tilde {S} x \in \tilde {\mathcal {A}} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, we prove that the map
$\tilde {S} x \in \tilde {\mathcal {A}} \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
, we prove that the map 
 $G \ni g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g] \otimes \operatorname {\mathrm {id}} (\tilde {S} x) \in \text {Fix}(\delta _{\mathcal {D}}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is norm continuous. For the latter assertion, we use the identity
$G \ni g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g] \otimes \operatorname {\mathrm {id}} (\tilde {S} x) \in \text {Fix}(\delta _{\mathcal {D}}) \otimes {\mathcal {K}}(L^2(G),{\mathfrak {H}})$
 is norm continuous. For the latter assertion, we use the identity 
 $$ \begin{align*} \operatorname{\mathrm{Ad}} [1_{\mathcal{A}} \otimes \mu_g] \otimes \operatorname{\mathrm{id}} (\tilde{S} x) = \tilde{S} (1_{\mathcal{A}} \otimes 1_{\mathfrak{H}} \otimes r_g) \operatorname{\mathrm{Ad}} [1_{\mathcal{A}} \otimes \mu_g \otimes 1_G](x), && g \in G, \end{align*} $$
$$ \begin{align*} \operatorname{\mathrm{Ad}} [1_{\mathcal{A}} \otimes \mu_g] \otimes \operatorname{\mathrm{id}} (\tilde{S} x) = \tilde{S} (1_{\mathcal{A}} \otimes 1_{\mathfrak{H}} \otimes r_g) \operatorname{\mathrm{Ad}} [1_{\mathcal{A}} \otimes \mu_g \otimes 1_G](x), && g \in G, \end{align*} $$
which is a consequence of Lemma 3.7.2, together with the immediate norm continuity of the maps 
 $G \ni g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g \otimes 1_G](x)$
 and
$G \ni g \mapsto \operatorname {\mathrm {Ad}} [1_{\mathcal {A}} \otimes \mu _g \otimes 1_G](x)$
 and 
 $G \ni g \mapsto (1_{\mathcal {A}} \otimes 1_{\mathfrak {H}} \otimes r_g) y$
,
$G \ni g \mapsto (1_{\mathcal {A}} \otimes 1_{\mathfrak {H}} \otimes r_g) y$
, 
 $y \in {\mathcal {L}}({\mathfrak {H}}_P) \otimes {\mathcal {K}}(L^2(G))$
.
$y \in {\mathcal {L}}({\mathfrak {H}}_P) \otimes {\mathcal {K}}(L^2(G))$
.
 The fixed point algebra of 
 $(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is characterized by our next result.
$(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is characterized by our next result.
Lemma 3.9 The fixed point algebra of the C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is the image of the faithful unital
$(\tilde {\mathcal {A}},G,\tilde {\alpha })$
 is the image of the faithful unital 
 $^*$
-homomorphism
$^*$
-homomorphism 
 $\gamma : \mathcal {B} \rightarrow \tilde {\mathcal {A}}$
,
$\gamma : \mathcal {B} \rightarrow \tilde {\mathcal {A}}$
, 
 $\gamma (b) := S(b \otimes 1_G) S^*$
.
$\gamma (b) := S(b \otimes 1_G) S^*$
.
Proof We first establish that 
 $\gamma $
 is well defined. To do this, let
$\gamma $
 is well defined. To do this, let 
 $b \in \mathcal {B}$
 and let
$b \in \mathcal {B}$
 and let 
 $x \in \mathcal {D}$
. By (2.6) and (2.9), we have
$x \in \mathcal {D}$
. By (2.6) and (2.9), we have 
 $\gamma (b)x \in \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
. Combining (2.7) with the fact that
$\gamma (b)x \in \mathcal {A} \otimes {\mathcal {K}}({\mathfrak {H}})$
. Combining (2.7) with the fact that 
 $\mathcal {D}$
 is fixed under
$\mathcal {D}$
 is fixed under 
 $\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
,
$\operatorname {\mathrm {Ad}}[u_g \otimes 1_{\mathfrak {H}}]$
, 
 $g \in G$
, further yields
$g \in G$
, further yields 
 $\gamma (b)x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
. In consequence,
$\gamma (b)x \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
. In consequence, 
 $\gamma (b)x \in \mathcal {D}$
, because
$\gamma (b)x \in \mathcal {D}$
, because 
 $\gamma (b)x = S^*S \gamma (b)x S^*S$
. In the same way we see that
$\gamma (b)x = S^*S \gamma (b)x S^*S$
. In the same way we see that 
 $x\gamma (b) \in \mathcal {D}$
. Hence
$x\gamma (b) \in \mathcal {D}$
. Hence 
 $\gamma (b) \in {\mathcal {M}}(\mathcal {D})$
. Since
$\gamma (b) \in {\mathcal {M}}(\mathcal {D})$
. Since 
 $$ \begin{align*} \delta_{\mathcal{D}}(\gamma(b)) &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^* ] ( S_{12} ( b \otimes 1_G \otimes 1_G ) S_{12}^* ) \\ &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^* S_{12} ] ( b \otimes 1_G \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[ S_{12}] (b \otimes 1_G \otimes 1_G) = \gamma(b) \otimes 1_G, \end{align*} $$
$$ \begin{align*} \delta_{\mathcal{D}}(\gamma(b)) &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^* ] ( S_{12} ( b \otimes 1_G \otimes 1_G ) S_{12}^* ) \\ &= \operatorname{\mathrm{Ad}}[ S_{12} (W_G)_{23} S_{12}^* S_{12} ] ( b \otimes 1_G \otimes 1_G) \\ &= \operatorname{\mathrm{Ad}}[ S_{12}] (b \otimes 1_G \otimes 1_G) = \gamma(b) \otimes 1_G, \end{align*} $$
i.e., 
 $\gamma (b) \in \text {Fix}(\delta _{\mathcal {D}})$
, and
$\gamma (b) \in \text {Fix}(\delta _{\mathcal {D}})$
, and 
 $\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g](\gamma (b)) = \gamma (b)$
 for all
$\operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu _g](\gamma (b)) = \gamma (b)$
 for all 
 $g \in G$
, which is due to (2.8), it may finally be concluded that
$g \in G$
, which is due to (2.8), it may finally be concluded that 
 $\gamma (b) \in \tilde {\mathcal {A}}$
. Note that we have actually proved more, namely that
$\gamma (b) \in \tilde {\mathcal {A}}$
. Note that we have actually proved more, namely that 
 $\gamma (b)$
 is fixed under
$\gamma (b)$
 is fixed under 
 $\tilde {\alpha }_g$
,
$\tilde {\alpha }_g$
, 
 $g \in G$
, which amounts to saying that
$g \in G$
, which amounts to saying that 
 ${\gamma (\mathcal {B}) \subseteq \tilde {\mathcal {A}}^G}$
. We thus proceed to show that
${\gamma (\mathcal {B}) \subseteq \tilde {\mathcal {A}}^G}$
. We thus proceed to show that 
 $\tilde {\mathcal {A}}^G \subseteq \gamma (\mathcal {B})$
. For this, let
$\tilde {\mathcal {A}}^G \subseteq \gamma (\mathcal {B})$
. For this, let 
 $x \in \tilde {\mathcal {A}}^G$
. We put
$x \in \tilde {\mathcal {A}}^G$
. We put 
 $y := S^* x S$
 and observe that
$y := S^* x S$
 and observe that 
 $(W_G)_{23} (y \otimes 1_G) = (y \otimes 1_G) (W_G)_{23}$
 or, equivalently,
$(W_G)_{23} (y \otimes 1_G) = (y \otimes 1_G) (W_G)_{23}$
 or, equivalently, 
 $\operatorname {\mathrm {id}} \otimes \delta _G (y \otimes 1_G) = y \otimes 1_G$
. As the coaction
$\operatorname {\mathrm {id}} \otimes \delta _G (y \otimes 1_G) = y \otimes 1_G$
. As the coaction 
 $\delta _G$
 is ergodic, we can assert that
$\delta _G$
 is ergodic, we can assert that 
 ${y = b \otimes 1_G}$
 for some
${y = b \otimes 1_G}$
 for some 
 $b \in \mathcal {B}$
. It follows that
$b \in \mathcal {B}$
. It follows that 
 $x = P x P= S y S^* = S (b \otimes 1_G) S^* = \gamma (b)$
, i. e.,
$x = P x P= S y S^* = S (b \otimes 1_G) S^* = \gamma (b)$
, i. e., 
 ${\tilde {\mathcal {A}}^G \subseteq \gamma (\mathcal {B})}$
 as required. That
${\tilde {\mathcal {A}}^G \subseteq \gamma (\mathcal {B})}$
 as required. That 
 $\gamma $
 is a faithful unital
$\gamma $
 is a faithful unital 
 $^*$
-homomorphism is clear, and so the proof is complete.
$^*$
-homomorphism is clear, and so the proof is complete.
 We proceed with a technical no-go result which is also of independent interest. For its proof we make use of the fact that each C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A},G,\alpha )$
 can be decomposed into its isotypic components, say
$(\mathcal {A},G,\alpha )$
 can be decomposed into its isotypic components, say
 $A(\sigma )$
,
$A(\sigma )$
, 
 $\sigma \in \operatorname {\mathrm {Irr}}(G)$
, which amounts to saying that their algebraic direct sum forms a dense
$\sigma \in \operatorname {\mathrm {Irr}}(G)$
, which amounts to saying that their algebraic direct sum forms a dense 
 $^*$
-subalgebra of
$^*$
-subalgebra of 
 $\mathcal {A}$
 (see, e. g., [Reference Hofmann and Morris13, Theorem 4.22]).
$\mathcal {A}$
 (see, e. g., [Reference Hofmann and Morris13, Theorem 4.22]).
Lemma 3.10 Let 
 $(\mathcal {A},G,\alpha )$
 be a free C
$(\mathcal {A},G,\alpha )$
 be a free C
 $^*$
-dynamical system with fixed point algebra
$^*$
-dynamical system with fixed point algebra 
 $\mathcal {B}$
. Furthermore, let
$\mathcal {B}$
. Furthermore, let 
 $\mathcal {A}_0$
 be a G-invariant unital C
$\mathcal {A}_0$
 be a G-invariant unital C
 $^*$
-subalgebra. If the induced C
$^*$
-subalgebra. If the induced C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\mathcal {A}_0,G,\alpha )$
 is free and
$(\mathcal {A}_0,G,\alpha )$
 is free and 
 $\mathcal {A}_0^G=\mathcal {B}$
, then
$\mathcal {A}_0^G=\mathcal {B}$
, then 
 $\mathcal {A}_0 = \mathcal {A}$
.
$\mathcal {A}_0 = \mathcal {A}$
.
Proof We shall have established the lemma if we prove that the respective isotypic components are equal, i. e., 
 $A_0(\sigma ) = A(\sigma )$
 for all
$A_0(\sigma ) = A(\sigma )$
 for all 
 $\sigma \in \operatorname {\mathrm {Irr}}(G)$
. To prove the latter assertion, we fix
$\sigma \in \operatorname {\mathrm {Irr}}(G)$
. To prove the latter assertion, we fix 
 $\sigma \in \operatorname {\mathrm {Irr}}(G)$
 and recall that the freeness of
$\sigma \in \operatorname {\mathrm {Irr}}(G)$
 and recall that the freeness of 
 $(\mathcal {A},G,\alpha )$
 implies that
$(\mathcal {A},G,\alpha )$
 implies that 
 $A(\sigma )$
 is a Morita equivalence bimodule between the unital C
$A(\sigma )$
 is a Morita equivalence bimodule between the unital C
 $^*$
-algebras
$^*$
-algebras 
 $\mathcal {B} \otimes {\mathcal {L}}(V_\sigma )$
 and
$\mathcal {B} \otimes {\mathcal {L}}(V_\sigma )$
 and 
 $$ \begin{align*} \mathcal{C} := \{ x \in \mathcal{A} \otimes {\mathcal{L}}(V_\sigma) : (\forall g \in G) \, (1_{\mathcal{A}} \otimes \sigma_g) \alpha_g(x) = x (1_{\mathcal{A}} \otimes \sigma_g) \} \end{align*} $$
$$ \begin{align*} \mathcal{C} := \{ x \in \mathcal{A} \otimes {\mathcal{L}}(V_\sigma) : (\forall g \in G) \, (1_{\mathcal{A}} \otimes \sigma_g) \alpha_g(x) = x (1_{\mathcal{A}} \otimes \sigma_g) \} \end{align*} $$
(see [Reference Schwieger and Wagner20, Section 3]). Likewise, the freeness of 
 $(\mathcal {A}_0,G,\alpha )$
 implies that
$(\mathcal {A}_0,G,\alpha )$
 implies that 
 $A_0(\sigma )$
 is a Morita equivalence bimodule between the unital C
$A_0(\sigma )$
 is a Morita equivalence bimodule between the unital C
 $^*$
-algebras
$^*$
-algebras 
 $\mathcal {B} \otimes {\mathcal {L}}(V_\sigma )$
 and
$\mathcal {B} \otimes {\mathcal {L}}(V_\sigma )$
 and 
 $$ \begin{align*} \mathcal{C}_0 := \{ x \in \mathcal{A}_0 \otimes {\mathcal{L}}(V_\sigma) : (\forall g \in G) \, (1_{\mathcal{A}} \otimes \sigma_g) x = x (1_{\mathcal{A}} \otimes \sigma_g)\}. \end{align*} $$
$$ \begin{align*} \mathcal{C}_0 := \{ x \in \mathcal{A}_0 \otimes {\mathcal{L}}(V_\sigma) : (\forall g \in G) \, (1_{\mathcal{A}} \otimes \sigma_g) x = x (1_{\mathcal{A}} \otimes \sigma_g)\}. \end{align*} $$
This makes it possible to apply [Reference Schwieger and Wagner22, Lemma A.1] which gives elements 
 $s_1,\ldots ,s_n \in A_0(\sigma )$
 such that
$s_1,\ldots ,s_n \in A_0(\sigma )$
 such that  . Since the inner products of
. Since the inner products of 
 $A_0(\sigma )$
 are exactly the restrictions in domain and codomain of the respective inner products of
$A_0(\sigma )$
 are exactly the restrictions in domain and codomain of the respective inner products of 
 $A(\sigma )$
, we conclude that
$A(\sigma )$
, we conclude that  for all
 for all 
 $1 \leq k \leq n$
. Hence for each
$1 \leq k \leq n$
. Hence for each 
 $x \in A(\sigma )$
 we have
$x \in A(\sigma )$
 we have 

i. e., 
 $A(\sigma ) \subseteq A_0(\sigma )$
. This completes the proof, as the other inclusion is obvious.
$A(\sigma ) \subseteq A_0(\sigma )$
. This completes the proof, as the other inclusion is obvious.
Now, we are almost in a position to state and prove the main result of this section. The only preparatory point remaining concerns the following map:
 $$ \begin{gather*} j_\alpha : \mathcal{A} \rightarrow C(G,\mathcal{A}) = \mathcal{A} \otimes C(G) \subseteq {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes L^2(G)), \\ j_\alpha(x)(g) = \alpha_{g^{-1}}(x) = u_g^* x u_g. \end{gather*} $$
$$ \begin{gather*} j_\alpha : \mathcal{A} \rightarrow C(G,\mathcal{A}) = \mathcal{A} \otimes C(G) \subseteq {\mathcal{L}}({\mathfrak{H}}_{\mathcal{A}} \otimes L^2(G)), \\ j_\alpha(x)(g) = \alpha_{g^{-1}}(x) = u_g^* x u_g. \end{gather*} $$
It is clear that 
 $j_\alpha $
 is injective. Moreover, straightforward computations reveal that
$j_\alpha $
 is injective. Moreover, straightforward computations reveal that 
 $$ \begin{align} &\hspace{-3pt}\operatorname{\mathrm{Ad}}[u_g \otimes r_g] \circ j_\alpha = j_\alpha \ \kern5pt\qquad\qquad\qquad\qquad \forall g \in G , \end{align} $$
$$ \begin{align} &\hspace{-3pt}\operatorname{\mathrm{Ad}}[u_g \otimes r_g] \circ j_\alpha = j_\alpha \ \kern5pt\qquad\qquad\qquad\qquad \forall g \in G , \end{align} $$
 $$ \begin{align} \operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \lambda_g] \circ j_\alpha &= j_\alpha \circ \alpha_g && \forall g \in G. \end{align} $$
$$ \begin{align} \operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \lambda_g] \circ j_\alpha &= j_\alpha \circ \alpha_g && \forall g \in G. \end{align} $$
Theorem 3.11 The map
 $$ \begin{align} \pi_S : \mathcal{A} \rightarrow \tilde{\mathcal{A}} \subseteq{\mathcal{M}}(\mathcal{D}) \subseteq {\mathcal{L}}({\mathfrak{H}}_P), && \pi_S(x) := S j_\alpha(x) S^* \end{align} $$
$$ \begin{align} \pi_S : \mathcal{A} \rightarrow \tilde{\mathcal{A}} \subseteq{\mathcal{M}}(\mathcal{D}) \subseteq {\mathcal{L}}({\mathfrak{H}}_P), && \pi_S(x) := S j_\alpha(x) S^* \end{align} $$
is a G-equivariant 
 $^*$
-isomorphism.
$^*$
-isomorphism.
Proof We start again by proving that the map under consideration is well defined. For this purpose, let 
 $x \in \mathcal {A}$
. The verification of
$x \in \mathcal {A}$
. The verification of 
 $\pi _S(x) \in {\mathcal {M}}(\mathcal {D})$
 can be handled in much the same way as in the proof of Lemma 3.9, the only difference being that (2.7) needs to be combined with (3.3) to establish that
$\pi _S(x) \in {\mathcal {M}}(\mathcal {D})$
 can be handled in much the same way as in the proof of Lemma 3.9, the only difference being that (2.7) needs to be combined with (3.3) to establish that 
 $\pi _S(x) d, d \pi _S(x) \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 for all
$\pi _S(x) d, d \pi _S(x) \in \mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})$
 for all 
 ${d \in \mathcal {D}}$
. Moreover, the identity
${d \in \mathcal {D}}$
. Moreover, the identity 
 $(W_G)_{23} j_\alpha (x)_{12} (W_G)_{23}^* = j_\alpha (x)_{12}$
, which is easy to check, implies that
$(W_G)_{23} j_\alpha (x)_{12} (W_G)_{23}^* = j_\alpha (x)_{12}$
, which is easy to check, implies that 
 $$ \begin{align*} \delta_{\mathcal{D}}(\pi_S(x)) &= \operatorname{\mathrm{Ad}}[S_{12} (W_G)_{23} S_{12}^*] (S_{12} j_\alpha(x)_{12} S_{12}^*) \\ &= \operatorname{\mathrm{Ad}}[S_{12}] ((W_G)_{23} j_\alpha(x)_{12} (W_G)_{23}^*) \\ &= \operatorname{\mathrm{Ad}}[S_{12}] (j_\alpha(x)_{12}) = \pi_S(x)_{12}, \end{align*} $$
$$ \begin{align*} \delta_{\mathcal{D}}(\pi_S(x)) &= \operatorname{\mathrm{Ad}}[S_{12} (W_G)_{23} S_{12}^*] (S_{12} j_\alpha(x)_{12} S_{12}^*) \\ &= \operatorname{\mathrm{Ad}}[S_{12}] ((W_G)_{23} j_\alpha(x)_{12} (W_G)_{23}^*) \\ &= \operatorname{\mathrm{Ad}}[S_{12}] (j_\alpha(x)_{12}) = \pi_S(x)_{12}, \end{align*} $$
i. e., 
 $\pi _S(x) \in \text {Fix}(\delta _{\mathcal {D}})$
. That, in fact,
$\pi _S(x) \in \text {Fix}(\delta _{\mathcal {D}})$
. That, in fact, 
 $\pi _S(x) \in \tilde {\mathcal {A}}$
 as claimed now follows from
$\pi _S(x) \in \tilde {\mathcal {A}}$
 as claimed now follows from 
 $$ \begin{align} \tilde{\alpha}_g (\pi_S(x)) \overset{({2.8})}= S (\operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \lambda_g]( j_\alpha(x)) S^* \overset{({3.4})}= \pi_S(\alpha_g(x)), && g \in G. \end{align} $$
$$ \begin{align} \tilde{\alpha}_g (\pi_S(x)) \overset{({2.8})}= S (\operatorname{\mathrm{Ad}}[1_{\mathcal{A}} \otimes \lambda_g]( j_\alpha(x)) S^* \overset{({3.4})}= \pi_S(\alpha_g(x)), && g \in G. \end{align} $$
Of course, (3.6) also establishes that 
 $\pi _S$
 is G-equivariant, and so it remains to show that
$\pi _S$
 is G-equivariant, and so it remains to show that 
 $\pi _S$
 is a
$\pi _S$
 is a 
 $^*$
-isomorphism. Clearly,
$^*$
-isomorphism. Clearly, 
 $\pi _S$
 is a
$\pi _S$
 is a 
 $^*$
-homomorphism. Moreover, it is injective, because
$^*$
-homomorphism. Moreover, it is injective, because 
 $j_\alpha $
 is injective and S is an isometry. With this, we can assert that the induced C
$j_\alpha $
 is injective and S is an isometry. With this, we can assert that the induced C
 $^*$
-dynamical system
$^*$
-dynamical system 
 $(\pi _S(\mathcal {A}),G,\tilde {\alpha })$
 is free with fixed point algebra
$(\pi _S(\mathcal {A}),G,\tilde {\alpha })$
 is free with fixed point algebra 
 ${\pi _S(\mathcal {B}) = \gamma (\mathcal {B}) = \tilde {\mathcal {A}}^G}$
 (see Lemma 3.9 for the latter equalities). Hence Lemma 3.10 implies that
${\pi _S(\mathcal {B}) = \gamma (\mathcal {B}) = \tilde {\mathcal {A}}^G}$
 (see Lemma 3.9 for the latter equalities). Hence Lemma 3.10 implies that 
 $\pi _S$
 is surjective, i. e.,
$\pi _S$
 is surjective, i. e., 
 $\pi _S(\mathcal {A}) = \tilde {\mathcal {A}}$
, and therefore the proof is complete.
$\pi _S(\mathcal {A}) = \tilde {\mathcal {A}}$
, and therefore the proof is complete.
Remark 3.12 An alternative strategy for proofing Theorem 3.11 would be to establish that the isometries S and 
 $\tilde {S}$
 are conjugated in the sense of [Reference Schwieger and Wagner22, Theorem 4.4]. With some technical effort this can be done.
$\tilde {S}$
 are conjugated in the sense of [Reference Schwieger and Wagner22, Theorem 4.4]. With some technical effort this can be done.
Corollary 3.13 (cf. [Reference Schwieger and Wagner23, Corollary 4.2])
 The pair 
 $(\pi _S, \operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu ])$
 is a faithful generalized covariant representation of
$(\pi _S, \operatorname {\mathrm {Ad}}[1_{\mathcal {A}} \otimes \mu ])$
 is a faithful generalized covariant representation of 
 $(\mathcal {A},G,\alpha )$
 on
$(\mathcal {A},G,\alpha )$
 on 
 ${\mathcal {M}}(\mathcal {D}) = P{\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})) P$
. Moreover, any faithful
${\mathcal {M}}(\mathcal {D}) = P{\mathcal {M}}(\mathcal {B} \otimes {\mathcal {K}}({\mathfrak {H}})) P$
. Moreover, any faithful 
 $^*$
-representation
$^*$
-representation 
 $\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})$
 gives rise to an honest faithful covariant representation on
$\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})$
 gives rise to an honest faithful covariant representation on 
 $P({\mathfrak {H}}_{\mathcal {B}} \otimes {\mathfrak {H}})$
.
$P({\mathfrak {H}}_{\mathcal {B}} \otimes {\mathfrak {H}})$
.
Corollary 3.14 (cf. [Reference Wassermann27, Theorem 10])
 Let 
 $(\mathcal {A},G,\alpha )$
 be a cleft C
$(\mathcal {A},G,\alpha )$
 be a cleft C
 $^*$
-dynamical system (see Section 2.4). Then
$^*$
-dynamical system (see Section 2.4). Then 
 $(\mathcal {A},G,\alpha )$
 can be realized as the invariants of an equivariant coaction of G on
$(\mathcal {A},G,\alpha )$
 can be realized as the invariants of an equivariant coaction of G on 
 $\mathcal {B} \otimes {\mathcal {K}}(L^2(G))$
. Moreover, any faithful
$\mathcal {B} \otimes {\mathcal {K}}(L^2(G))$
. Moreover, any faithful 
 $^*$
-representation
$^*$
-representation 
 ${\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})}$
 gives rise to an honest faithful covariant representation on
${\pi _{\mathcal {B}} : \mathcal {B} \to {\mathcal {L}}({\mathfrak {H}}_{\mathcal {B}})}$
 gives rise to an honest faithful covariant representation on 
 ${\mathfrak {H}}_{\mathcal {B}} \otimes L^2(G)$
.
${\mathfrak {H}}_{\mathcal {B}} \otimes L^2(G)$
.
Outlook
As pointed out by the referee, a reformulation of our main result in terms of groups and their quantum duals could provide a pathway for generalizing our findings within the framework of quantum groups, potentially offering valuable insights in relation to Wassermann’s work. We leave this extension as a direction for future research.
Acknowledgements
The authors thank the anonymous referee for their clear and constructive feedback, which greatly contributed to the manuscript’s improvement. The first author also expresses gratitude to iteratec GmbH.
 
 













 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
