Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:28:32.680Z Has data issue: false hasContentIssue false

A Question of Valdivia on Quasinormable Fréchet Spaces

Published online by Cambridge University Press:  20 November 2018

José Bonet*
Affiliation:
Departamento de Matemática Aplicada, E.T.S. Arquitectura, Universidad Politécnica de Valencia, E-46071 Valencia, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that a Fréchet space is quasinormable if and only if every null sequence in the strong dual converges equicontinuously to the origin. This answers positively a question raised by Valdivia. As a consequence a positive answer to a problem of Jarchow on Fréchet Schwartz spaces is obtained.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Bierstedt, K. D., Meise, R., Summers, W., Köthe sets and Köthe sequence spaces. Functional Analysis, Holomorphy and Approximation Theory, North-Holland Math. Studies, 71, Amsterdam, 1982,2791.Google Scholar
2. Grothendieck, A., Sur les espaces (F) et (DF), Summa Brasil Math. 3 (1954), 57123.Google Scholar
3. Jarchow, H., Locally convex spaces. Teubner, Stuttgart, 1981.Google Scholar
4. Köthe, G., Topological vector spaces I and II. Springer, Berlin-Heidelberg-New York, 1969 and 1979.Google Scholar
5. Lindstrom, M., A characterization of Schwartz spaces. Math. Z. 198 (1988), 423430.Google Scholar
6. Meise, R., Vogt, D., A characterization of quasinormable Fréchet spaces, Math. Nachr. 122 (1985), 141150.Google Scholar
7. Pérez Carreras, P., Bonet, J., Barrelled locally convex spaces. North-Holland Math. Studies 131, Amsterdam, 1987.Google Scholar
8. Valdivia, M., On quasinormable echelon space, Proc. Edinburgh Math. Soc. 24 (1981), 7380.Google Scholar
9 Valdivia, M., Topics in locally convex spaces. North-Holland Math. Studies 67, Amsterdam, 1982.Google Scholar
10. Vogt, D., Some results on continuous linear maps between Fréchet spaces , Functional Analysis: Surveys and Recent Results III, North-Holland Math. Studies 90, Amsterdam, 1984, 349381.Google Scholar
11. Vogt, D., Wagner, M. J., Characterisierung der Quotientràume von s und eine Vermutung von Matineau, Studia Math. 67 (1980), 225240.Google Scholar