Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:17:37.671Z Has data issue: false hasContentIssue false

Projective Reconstruction in Algebraic Vision

Published online by Cambridge University Press:  13 November 2019

Atsushi Ito
Affiliation:
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan Email: atsushi.ito@math.nagoya-u.ac.jp
Makoto Miura
Affiliation:
Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul, 130-722, Republic of Korea Email: miura@kias.re.kr
Kazushi Ueda
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan Email: kazushi@ms.u-tokyo.ac.jp

Abstract

We discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give an algebro-geometric variant of the projective reconstruction theorem by Hartley and Schaffalitzky.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

A. I. was supported by Grant-in-Aid for Scientific Research (14J01881, 17K14162). M. M. was supported by Korea Institute for Advanced Study. K. U. was partially supported by Grant-in-Aid for Scientific Research (15KT0105, 16K13743, 16H03930).

References

Arbarello, E., Cornalba, M., Griffiths, P. A., and Harris, J., Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, 1985. https://doi.org/10.1007/978-1-4757-5323-3CrossRefGoogle Scholar
Aholt, C., Sturmfels, B., and Thomas, R., A Hilbert scheme in computer vision. Canad. J. Math. 65(2013), no. 5, 961988. https://doi.org/10.4153/CJM-2012-023-2CrossRefGoogle Scholar
Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, resultants and multidimensional determinants. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.Google Scholar
Hartley, R. I. and Schaffalitzky, F., Reconstruction from projections using Grassmann tensors. Int. J. Comput. Vis. 83(2009), no. 3, 274293. https://doi.org/10.1007/s11263-009-0225-1Google Scholar
Hartley, R. and Vidal, R., Perspective nonrigid shape and motion recovery. Computer Vision – ECCV 2008, Lecture Notes in Computer Science, 5302, 2008, pp. 276289.Google Scholar
Li, B., Images of rational maps of projective spaces. Int. Math. Res. Not. IMRN 2008 no. 13, 41904228. https://doi.org/10.1093/imrn/rnx003Google Scholar
Lieblich, M. and Van Meter, L., Two Hilbert schemes in computer vision. arxiv:1707.09332Google Scholar
Mukai, S., Polarized K3 surfaces of genus 18 and 20. In: Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, pp. 264276. https://doi.org/10.1017/CBO9780511662652.019CrossRefGoogle Scholar
Nasihatkon, B., Hartley, R., and Trumpf, J., On projective reconstruction in arbitrary dimensions. 2014 IEEE Conference on Computer Vision and Pattern Recognition (June 2014, pp. 477–484).10.1109/CVPR.2014.68Google Scholar
Ottaviani, G., Varietà proiettive di codimensione piccola. Aracne, 1995.Google Scholar
Wolf, L. and Shashua, A., On projection matrices 𝓟k to 𝓟2, k = 3, …, 6, and their applications in computer vision. Int. J. Comput. Vis. 48(2002), no. 1, 5367. https://doi.org/10.1023/A:1014855311993CrossRefGoogle Scholar