Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We show that the injective Kobayashi–Royden differential metric, as defined by Hahn, is upper semicontinous.
[1] Hahn, K. T., Some remarks on a new pseudo differential metric. Ann. Polon. Math.39(1981), 71–81.Google Scholar
2
[2] Jarnicki, M. and Pflug, P., Invariant Distances and Metrics in Complex Analysis. de Gruyter Expositions in Mathematics 9, de Gruyter, Berlin, 1993.Google Scholar
3
[3] Kobayashi, S., A new invariant infinitesimal metric. Internat. J. Math.1(1990), 83–90.Google Scholar
4
[4] Kobayashi, S., Hyperbolic Manifolds and Holomorphic Mappings. Pure and Applied Mathematics 2, Marcel Dekker, New York (1970).Google Scholar
5
[5] Overholt, M., Injective hyperbolicity of domains. Ann. Polon Math.62(1995), 79–82.Google Scholar
6
[6] Royden, H., Remarks on the Kobayashi metric. Lecture Notes in Math. 185, Springer-Verlag, Berlin, 1971, pp. 125–137.Google Scholar
7
[7] Venturini, S., Pseudodistances and pseudometrics on real and complex manifolds. Ann.Mat. Pura. Appl.154(1989), 385–402.Google Scholar
8
[8] Vesentini, E., Injective hyperbolicity. Ricerche. Mat.36(1987), 99–109.Google Scholar
9
[9] Vigué, J. P., Une remarque sur l’hyperbolicité injective. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8)83(1989), 57–61.Google Scholar