Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:59:30.059Z Has data issue: false hasContentIssue false

On the Quadratic Residues (Mod p) in the Interval (0, p/4)

Published online by Cambridge University Press:  20 November 2018

Kenneth S. Williams*
Affiliation:
Department of Mathematics and Statistics, Carleton UniversityOttawa, Ontario, CanadaK1S 5B6
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A short proof is given of a result of Burde giving the parity of the number of quadratic residues (mod p) in the interval (0, p/4), where p ≡ 1(mod 4) is prime.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1983

References

1. Barkan, Philippe, Une propriété de congruence de la longueur de la période d'un développement en fraction continue, C.R. Acad. Se. Paris 281 (1975), 825-828.Google Scholar
2. Burde, Klaus, Eine Verteilungseigenschaft der Legendresymbole, J. Number Theory 12 (1980), 273-277.Google Scholar
3. Dickson, L. E., History of the Theory of Numbers, Volume 3, reprinted Chelsea Publishing Company, Bronx, N.Y. (1966).Google Scholar
4. Dirichlet, P. G. L., Recherches sur diverses applications de l'analyse infinitésimale ? la théorie des nombres, J. Reine Angew. Math. 21 (1840), 134-155.Google Scholar
5. Gauss, Cari Friedrich, Letter to P. G. L. Dirichlet dated 30 May 1828. (Reproduced in G. Lejeune Dirichlet's Werke, Chelsea Publishing Company, Bronx, N.Y. (1969) Volume 2, pp. 378-380.)Google Scholar
6. Yamamoto, Koichi, On Gaussian sums with biquadratic residue characters, J. Reine Angew. Math. 219 (1965), 200-213.Google Scholar