Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T23:49:24.368Z Has data issue: false hasContentIssue false

On The Existence of Restricted K-Limits

Published online by Cambridge University Press:  20 November 2018

Urban Cegrell*
Affiliation:
MCGill UniversityDepartment of Mathematics Montreal, Canada Uppsala UniversityDepartment of Mathematics Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to generalize the Lindelöf-Čirka theorem.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1985

References

1. Cegrell, U., Capacities and extremal plurisubharmonic functions on subsets of ℂn. Ark. Mat. 18 (1980), 199-206.Google Scholar
2. Čirka, E.M., The theorems of Lindelöf and Fatou in ℂn. Math. USSR Sb. 21 (1973), 619-641.Google Scholar
3. Cima, J.A. and Krantz, S.G., The Lindelöf principle and normal functions of several complex variables. Duke J. 50 (1983), 303-328.Google Scholar
4. Koranyi, A., Harmonic functions onHermitian hyperbolic space. Trans. Amer. Math. Soc. 135 (1969), 507-516.Google Scholar
5. Lindelöf, E., Sur une principe générale de l'analyse et ses applications à la théorie de la représentation conforme. Acta Soc. Sci. Fennicae 46 (1915), 1-35.Google Scholar
6. Rudin, W., Function theory in the unit ball of ℂn. Springer Verlag 1980.Google Scholar