Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T12:55:42.897Z Has data issue: false hasContentIssue false

On Darboux and Mean Value Properties

Published online by Cambridge University Press:  20 November 2018

P. S. Bullen
Affiliation:
Department of Mathematics, University of British Columbia, Vancouver, B.C., Canada
D. N. Sarkhel
Affiliation:
University of Kalyani, Kalyani, West Bengal, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we extend and greatly generalize, with some new information, the well known results that an approximately continuous function is Darboux, and that a finite approximate derivative has the mean value property and is Darboux. Our theorems on Darboux and mean value properties of derivatives include also those of selective derivatives and I-approximate derivatives.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Bruckner, A.M. and Cedar, J.G., Darboux continuity, Jber. Deutsch. Math. Verein. 67(1965), 93117.Google Scholar
2. Denjoy, A., Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43(1915), 161248.Google Scholar
3. Goffman, C. and Neugebauer, C.J., On approximate derivatives, Proc. Amer. Math. Soc. 11(1960), 962966.Google Scholar
4. Hobson, E.W., The theory of functions of a real variable and the theory of Fourier's series, Vol I (Dover, New York, 1957).Google Scholar
5. Khintchine, A., Recherches sur la structure des fonctions measurables, Fund. Math. 9(1927), 217 — 279.Google Scholar
6. Kulbacka, M., Sur certaines propriétés des dérivées approximatives, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12(1964), 1720.Google Scholar
7. O'Malley, R. J., Selective dérivâtes, Acta Math. Acad. Sci. Hung. 29(1977), 7797.Google Scholar
8. Sargent, W. L.C., Some properties of Cλ continuous functions, J. London Math. Soc 26(1951), 116121.Google Scholar
9. Sarkhel, D.N., On ωapproximately continuous Perron-Stieltjes and Denjoy-Stieltjes integral, J. Austral. Math. Soc. 18(1974), 129152.Google Scholar
10. Sarkhel, D.N. and De, A.K., The proximally continuous integrals, J. Austral. Math. Soc. (Series A) 31(1981), 2645.Google Scholar
11. Sen, H.K., Darboux's property and its applications, Proc. Benares Math. Soc. N.S. 2(1940), 1723.Google Scholar
12. Sinharoy, M., Remarks on Darboux and mean value properties of approximate derivatives, Comment. Math. 23(1983), 315324.Google Scholar
13. Tolstoff, G.P., Sur la dérivée approximative exacte, Recueil Math. (Mat. Sbornik) N.S. 4(1938), 499504.Google Scholar
14. Wilczynski, W., A category analogue of the density topology, approximate continuity and the approximate derivative, Real Analysis Exchange 10(1984-85), 241265.Google Scholar