Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T02:36:00.344Z Has data issue: false hasContentIssue false

A note on Mosco convergence in $\operatorname {\mathrm {CAT}}(0)$ spaces

Published online by Cambridge University Press:  17 January 2021

A. Bërdëllima*
Affiliation:
Institut für Mathematik, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

In this note, we show that in a complete $\operatorname {\mathrm {CAT}}(0)$ space pointwise convergence of proximal mappings under a certain normalization condition implies Mosco convergence.

Type
Article
Copyright
© Canadian Mathematical Society, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrov, A. D., A theorem on triangles in a metric space and some of its applications. Trudy Mat. Inst. Steklova 38(1951), 523.Google Scholar
Attouch, H., Variational convergence for functions and operators. Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.Google Scholar
Baćak, M., Convex analysis and optimization in Hadamard spaces. De Gruyter Series in Nonlinear Analysis and Applications, 22, De Gruyter, Berlin, 2014.CrossRefGoogle Scholar
Baćak, M., Old and new challenges in Hadamard spaces. Preprint, 2018. arXiv:1807.01355 Google Scholar
Baćak, M., Montag, M., and Steidl, G., Convergence of functions and their Moreau envelopes on Hadamard spaces. J. Appr. Theory (C) 224(2017), 112.CrossRefGoogle Scholar
Ballmann, W., Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Basel, 1995.Google Scholar
Bërdëllima, A., Investigations in Hadamard spaces. Ph.D. thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2020.Google Scholar
Bridson, M. R. and Haefliger, A., Metric spaces of nonpositive curvature. A Series of Comprehensive Studies in Mathematics, 319, Birkhäuser Boston Inc., Boston, 1999.CrossRefGoogle Scholar
Burago, Y., Burago, D., and Ivanov, S., A Course in Metric Geometry. Graduate Studies in Mathematics, vol. 33, Birkhäuser Boston Inc., Boston, 2001.Google Scholar
Effland, A., Neumayer, S., and Rumpf, M., Convergence of the time discrete metamorphosis model on Hadamard manifolds. SIAM J. Imag. Sci. 13(2020), no. 2, 557588.CrossRefGoogle Scholar
Gromov, M., Metric structures for Riemannian and non-Riemannian spaces, vol. 152, Birkhäuser Boston Inc., Boston, 1999 (Based on the 1981 French original).Google Scholar
Jost, J., Equilibrium maps between metric spaces. Calc. Var. Partial Diff. Equat. 2(1994), 173204.CrossRefGoogle Scholar
Jost, J., Nonlinear Dirichlet forms, new directions in Dirichlet forms. AMP/IP Stud. Adv. Math 8(1998), 147.CrossRefGoogle Scholar
Lim, T. C., Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 60(1976), 179182.CrossRefGoogle Scholar
Mayer, U. F., Gradient flows on nonpositively curved metric spaces and harmonic maps. Comm. Anal. Geom. 6(1998), 199253.CrossRefGoogle Scholar
Rockafellar, R. T., Convex analysis. Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1970.CrossRefGoogle Scholar
Tean, L. I. L., Ariza-Ruiz, D., and López-Acedo, G., Firmly nonexpansive mappings in classes of geodesic spaces. Trans. of the Amer. Math. Soc. 366(2014), 42994322.Google Scholar