Published online by Cambridge University Press: 10 December 2019
In this paper, we introduce a class of nonsmooth nonconvex optimization problems, and we propose to use a local iterative minimization-majorization (MM) algorithm to find an optimal solution for the optimization problem. The cost functions in our optimization problems are an extension of convex functions with MC separable penalty, which were previously introduced by Ivan Selesnick. These functions are not convex; therefore, convex optimization methods cannot be applied here to prove the existence of optimal minimum point for these functions. For our purpose, we use convex analysis tools to first construct a class of convex majorizers, which approximate the value of non-convex cost function locally, then use the MM algorithm to prove the existence of local minimum. The convergence of the algorithm is guaranteed when the iterative points $x^{(k)}$ are obtained in a ball centred at
$x^{(k-1)}$ with small radius. We prove that the algorithm converges to a stationary point (local minimum) of cost function when the surregators are strongly convex.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.