Published online by Cambridge University Press: 20 November 2018
We study the representations of extended affine Lie algebras   $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$  where
 $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$  where   $q$  is
 $q$  is   $N$ -th primitive root of unity (
 $N$ -th primitive root of unity (  $({{\mathbb{C}}_{q}}$  is the quantum torus in two variables). We first prove that
 $({{\mathbb{C}}_{q}}$  is the quantum torus in two variables). We first prove that   $\oplus \,s{{\ell }_{\ell +1}}\left( \mathbb{C} \right)$  for a suitable number of copies is a quotient of
 $\oplus \,s{{\ell }_{\ell +1}}\left( \mathbb{C} \right)$  for a suitable number of copies is a quotient of   $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$ . Thus any finite dimensional irreducible module for
 $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$ . Thus any finite dimensional irreducible module for   $\oplus \,s{{\ell }_{\ell +1}}\left( \mathbb{C} \right)$ lifts to a representation of
 $\oplus \,s{{\ell }_{\ell +1}}\left( \mathbb{C} \right)$ lifts to a representation of   $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$ . Conversely, we prove that any finite dimensional irreducible module for
 $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$ . Conversely, we prove that any finite dimensional irreducible module for   $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$  comes from above. We then construct modules for the extended affine Lie algebras
 $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)$  comes from above. We then construct modules for the extended affine Lie algebras   $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)\oplus \mathbb{C}{{d}_{1}}\oplus \mathbb{C}{{d}_{2}}$  which is integrable and has finite dimensional weight spaces.
 $s{{\ell }_{\ell +1}}\left( {{\mathbb{C}}_{q}} \right)\oplus \mathbb{C}{{d}_{1}}\oplus \mathbb{C}{{d}_{2}}$  which is integrable and has finite dimensional weight spaces.
 Comm. Math. Phys. 211 (2000), 745–777.Google Scholar
                Comm. Math. Phys. 211 (2000), 745–777.Google Scholar