Published online by Cambridge University Press: 20 November 2018
A Banach space X is said to have the Dunford-Pettis Property if every weakly compact linear operator T: X —> Y, where Y is any Banach space, is completely continuous (that is, T maps weakly convergent sequences to strongly convergent ones). In this paper, we prove that if A is a nest algebra of operators on a separable, infinite dimensional Hilbert space, then A fails to have the Dunford-Pettis Property. We also investigate a certain algebra associated to A, analogous to a construction used by Bourgain and others in connection with the Dunford-Pettis Property for function algebras. We show that this algebra must lie between A and the quasi-triangular algebra A + K and we give examples to show that either extreme or something in between is possible. Finally, we consider the algebra of analytic Toeplitz operators and give a result for the corresponding associated algebra which is analogous to a result of Cima, Jansen, and Yale for H∞.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.