Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T00:21:39.672Z Has data issue: false hasContentIssue false

Local Complements to the Hausdorff-Young Theorem for Amalgams

Published online by Cambridge University Press:  20 November 2018

Maria L. Torres de Squire*
Affiliation:
University of Regina Regina, Sask. S4S 0A2
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a locally compact abelian group. An amalgam space (Lpq)(G) (1 ≦ p,q ≦ ∞) is a Banach space of functions which belong locally to LP(G) and globally to ℓq. In this paper we present noninclusion results related to the Hausdorff-Young theorem for amalgams.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1987

References

1. Bertrandias, J.P. and Dupuis, C., Transformations de Fourier sur les espaces ℓp(LP'), Ann. Inst. Fourier, Grenoble 29, 1 (1979), pp. 189206.Google Scholar
2. Bertrandias, J.P., Dupuis, C. and Datry, C., Unions et intersections d'espaces Lp invariantes par Translation ou Convolution, Ann. Inst. Fourier, Grenoble 28, 2 (1978), pp. 5384.Google Scholar
3. Bloom, W., Strict local inclusion results between spaces of Fourier transforms, Pac. J. Math. 99, 2 (1982), pp. 265270.Google Scholar
4. Busby, R.C. and Smith, H.A., Product-convolution operators and mixed-normed spaces, Trans. Amer. Math. Soc. 263, 2 (1981), pp. 309341.Google Scholar
5. Fournier, J.J.F., Local complements to the Hausdorjf-Young Theorem, Michigan Math. J. 20 (1973), pp. 263276.Google Scholar
6. Fournier, J.J.F., On the Hausdorjf-Young Theorem for amalgams, Mh. Math. 95 (1983), pp. 117135.Google Scholar
7. Fournier, J.J.F., Lacunarity for amalgams, (preprint).Google Scholar
8. Fournier, J.J.F. and Stewart, J., Amalgams for Lp and ℓq , Bull. Am. Math. Soc. 13(1985), pp. 121.Google Scholar
9. Hewitt, E. and Ross, K.A., Abstract Harmonic Analysis, v. I, II, Springer-Verlag, 1970, 1979.Google Scholar
10. Holland, F., Harmonic analysis on amalgams of Lp and Lq , J. London Math. Soc. (2) 10 (1975), pp. 295305.Google Scholar
11. Rudin, W., Real and Complex Analysis, McGraw Hill Inc., New York, 1974.Google Scholar
12. Stewart, J., Fourier transform of unbounded measures, Can. J. Math. 31 (1979), pp. 1281 — 1292.Google Scholar
13. Squire, M. L. Torres de, Amalgams of Lp and ℓq, Ph.D. Thesis, McMaster University, 1984.Google Scholar