Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T14:40:51.444Z Has data issue: false hasContentIssue false

Integral Representation by Boundary Vector Measures

Published online by Cambridge University Press:  20 November 2018

Paulette Saab*
Affiliation:
The University of British Columbia, Vancouver, B.C., CanadaV6T 1Y4
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we show that if X is a compact Hausdorff space, A is an arbitrary linear subspace of C(X, C), and if E is a Banach space, then each element L of (AE)* can be represented by a boundary E*-valued vector measure of the same norm as L.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1982

References

1. Choquet, G., Lecture on Analysis, Volume II, Benjamin, New York, 1969. (MR40 #3253).Google Scholar
2. Choquet, G., Frontière-module et représentation intégrale [Résumé], Séminaire Choquet, Univ. de Paris (1971/1973), No. 8, 4 pp.Google Scholar
3. Diestel, J. and Uhl, J. J. Jr., Vector measures. Math. Surveys, Volume 15, American Math. Soc, Providence, 1977.Google Scholar
4. Dinculeanu, N., Vector measures, Berlin, VEB Deutscher Verlag der Wissenschaften, 1966.Google Scholar
5. Fuhr, R. and Phelps, R. R., Uniqueness of complex representing measures on the Choquet boundary, J. Functional Analysis 14 (1973), 1-27. (MR50 #14186).Google Scholar
6. Hustad, O., A norm preserving complex Choquet Theorem, Math. Scand. 29 (1971), 272-278. (MR48 #852).Google Scholar
7. Singer, I., Sur la meilleur approximation des fonctions abstraites continues à valeurs dans un espace de Banach. Rev. Roumaine Math. Pures Appl. 2 (1957), 245-262.Google Scholar
8. Saab, P., The Choquet integral representation in the affine vector-valued case. Aequationes Mathematicae 20 (1980), 252-262.Google Scholar
9. Saab, P., Representation intégrale dans des sous-espaces de fonctions à valeurs vectorielles. Séminaire Choquet, (1974-1975), No. 23, 10 p.Google Scholar
10. Schaefer, H. H., Banach Lattices and Positive Operators. Springer-Verlag, New York- Heidelberg-Berlin, 1974.Google Scholar