Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T02:01:33.510Z Has data issue: false hasContentIssue false

Instabilité Des Corps Formellement Réels

Published online by Cambridge University Press:  20 November 2018

Jean-Louis Duret*
Affiliation:
Université d'AngersFaculté des Sciences Boulevard Lavoisier 49045, Angers Cedex
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A ‖ désignera le cardinal de A. Soient T une théorie complète du premier ordre dans un langage dénombrable, M un modèle de T, X un sous-ensemble de M; soit T(X) l'ensemble des formules closes à paramètres dans X satisfaites par M; on appelle n-type de T sur X un ensemble consistant avec T(X) et maximal de formules à paramètres dans X à n variables libres.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Ax, James, On the undecidability of power series fields, Proc. Am. Math. Soc. 162 (1965) 846.Google Scholar
2. Baer, Reinhold, Inverses and zero-divisors, Bull. Amer. Math. Soc. 48 (1942) 630-638.Google Scholar
3. Berthier, Daniel, Stability of non-model-complete theories; products, groups, J. London Math. Soc. (2) 11 (1975) 453-464.Google Scholar
4. Feigner, Ulrich, 1-kategorische Theorien nicht-kommutativer Ringe, Fundamenta Mathematicae LXXXII (1975) 331-346.Google Scholar
5. Robinson, Julia, Definability and decision problems in arithmetic, J. S. L. 14 (1949).Google Scholar
6. Shelah, Saharon, Stability, the f.c.p., and superstability; model theoretic properties of formulas in first order theory, Ann. Math. Logic (3) 3 (1971) 271-362.Google Scholar
7. Shelah, Saharon, Differentially closed fields, Israël J. of Math. 16 (1973) 314-328. Google Scholar