No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let k be a field. Two field extensions E, F of k are said to have a product- in the category of field extensions of k (see e.g. [1, p. 30]) if and only if there exist a field extension P of k and two k -isomorphisms P→ E, P→ F satisfying the following universal property. For any field extension K of k and any pair of k-isomorphisms K→E, K→F, there exists a unique k-isomorphism K→P such that the diagrams below commute.