Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T21:36:39.044Z Has data issue: false hasContentIssue false

Growth Rates of 3-dimensional Hyperbolic Coxeter Groups are Perron Numbers

Published online by Cambridge University Press:  20 November 2018

Tomoshige Yukita*
Affiliation:
Department of Mathematics, School of Education, Waseda University, Nishi-Waseda 1-6-1, Shinjuku, Tokyo 169-8050, Japan, e-mail: yshigetomo@suou.waseda.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider the growth rates of 3-dimensional hyperbolic Coxeter polyhedra with at least one dihedral angle of the form $\frac{\pi }{k}$ for an integer $k\ge 7$. Combining a classical result by Parry with a previous result of ours, we prove that the growth rates of 3-dimensional hyperbolic Coxeter groups are Perron numbers.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Andreev, E. M., Convex polyhedra offinite volume in Lobachevskij Space. Mat. Sb., Nov. Ser. 83 (1970), 256260; English translation in Math. USSR Sb. 12(1971), 255259.Google Scholar
[2] Federico, P. J., Polyhedra with 4 to 8 faces. Geometriae Dedicata 3 (1975), 469481. http://dx.doi.Org/10.1007/BF00181378Google Scholar
[3] de la Harpe, P., Groupes de Coxeter infinis non affines. Exposition. Math. 5 (1987), 9196.Google Scholar
[4] Humphreys, J. E., Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990. http://dx.doi.Org/10.1017/CBO9780511623646Google Scholar
[5] Kellerhals, R., Cofinite hyperbolic Coxeter groups, minimal growth rate and Pisot numbers. Algebr. Geom. Topol. 13 (2013), 10011025. http://dx.doi.org/10.2140/agt.2013.13.1001Google Scholar
[6] Kellerhals, R. and Kolpakov, A., The minimal growth rate of cocompact Coxeter groups in hyperbolic 3-space. Canad. J. Math. 66 (2014), 354372. http://dx.doi.Org/10.4153/CJM-2O12-062-3Google Scholar
[7] Kellerhals, R. and Perren, G., On the growth of cocompact hyperbolic Coxeter groups. European J. Combin. 32 (2011), no. 8, 12991316. http://dx.doi.Org/10.1016/j.ejc.2O11.03.020Google Scholar
[8] Kolpakov, A., Deformation of finite-volume hyperbolic Coxeter polyhedra, limiting growth rates and Pisot numbers. European J. Combin. 33 (2012), 17091724. http://dx.doi.Org/10.1016/j.ejc.2O12.04.003Google Scholar
[9] Komori, Y. and Umemoto, Y., On the growth of hyperbolic 3-dimensional generalized simplex reflection groups. Proc. Japan Acad. Ser. A Math. Sei. 88 (2012), no. 4, 6265. http://dx.doi.org/10.3792/pjaa.88.62Google Scholar
[10] Komori, Y. and Umemoto, Y., On 3-dimensional hyperbolic Coxeterpyramids. arxiv:1503.00583Google Scholar
[11] Komori, Y. and Yukita, T., On the growth rate of ideal Coxeter groups in hyperbolic 3-space, Proc. Japan Acad. Ser. A Math. Sei. Volume 91, Number 10 (2015), 155159. http://dx.doi.org/10.3792/pjaa.91.155Google Scholar
[12] Nonaka, J. and Kellerhals, R., The growth rates of ideal Coxeter polyhedra in hyperbolic 3-space. Tokyo J. Math., to appear.Google Scholar
[13] Parry, W., Growth series of Coxeter groups and Salem numbers. J. Algebra 154 (1993), 406415. http://dx.doi.Org/10.1006/jabr.1993.1022Google Scholar
[14] Roeder, R. K. W., Hubbard, J. H., and Dunbar, W. D., Andreev's theorem on hyperbolic polyhedra. Ann. Inst. Fourier (Grenoble) 57 (2007), 825882. http://dx.doi.Org/10.58O2/aif.2279Google Scholar
[15] Solomon, L., The Orders ofthefinite Chevalley groups. J. Algebra 3 (1966), 376393. http://dx.doi.Org/10.1016/0021-8693(66)90007-XGoogle Scholar
[16] Steinberg, R., Endomorphisms of linear algebraic groups. Memoirs of the American Mathematical Society, 80, American Mathematical Society, Providence, RI, 1968.Google Scholar
[17] Tumarkin, P. V., Hyperbolic Coxeter n-polytopes with n + Ifacets. (Russian) Mat. Zametki 75(2004), no.6, 909916; translation in: Math. Notes 75(2004), no. 5-6, 848-854 http://dx.doi.Org/10.1023/B:MATN.0000030993.74338.ddGoogle Scholar
[18] Yukita, T., On the growth rates ofcofinite 3-dimensional hyperbolic Coxeter groups whose dihedral angles are of the form — for = 2,3,4,5,6. RIMS Kokyüroku Bessatsu, to appear. arxiv:1 603.04592Google Scholar