Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T01:45:45.193Z Has data issue: false hasContentIssue false

Groups whose Chermak–Delgado lattice is a subgroup lattice of an abelian group

Published online by Cambridge University Press:  17 June 2022

Lijian An*
Affiliation:
Department of Mathematics, Shanxi Normal University, Linfen, Shanxi 041004, P. R. China
*

Abstract

The Chermak–Delgado lattice of a finite group G is a self-dual sublattice of the subgroup lattice of G. In this paper, we prove that, for any finite abelian group A, there exists a finite group G such that the Chermak–Delgado lattice of G is a subgroup lattice of A.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by NSFC (Grant No. 11971280).

References

An, L., Groups whose Chermak–Delgado lattice is a quasi-antichain . J. Group Theory 22(2019), no. 3, 529544.CrossRefGoogle Scholar
An, L., Groups whose Chermak–Delgado lattice is a subgroup lattice of an elementary abelian p-group . Comm. Algebra 50(2022), no.7, 28462853.CrossRefGoogle Scholar
An, L., Twisted centrally large subgroups of finite groups . J. Algebra 604(2022), 87106.CrossRefGoogle Scholar
An, L., Brennan, J., Qu, H., and Wilcox, E., Chermak–Delgado lattice extension theorems . Comm. Algebra 43(2015), no. 5, 22012213.CrossRefGoogle Scholar
Brewster, B., Hauck, P., and Wilcox, E., Groups whose Chermak–Delgado lattice is a chain . J. Group Theory 17(2014), no. 2, 253265.CrossRefGoogle Scholar
Brewster, B., Hauck, P., and Wilcox, E., Quasi-antichain Chermak–Delgado lattices of finite groups . Arch. Math. 103(2014), no. 4, 301311.CrossRefGoogle Scholar
Brewster, B. and Wilcox, E., Some groups with computable Chermak–Delgado lattices . Bull. Aust. Math. Soc. 86(2012), no. 1, 2940.CrossRefGoogle Scholar
Brush, E., Dietz, J., Johnson-Tesch, K., and Power, B., On the Chermak–Delgado lattices of split metacyclic p-groups . Involve 9(2016), no. 5, 765782.CrossRefGoogle Scholar
Chermak, A. and Delgado, A., A measuring argument for finite groups . Proc. Amer. Math. Soc. 107(1989), no. 4, 907914.CrossRefGoogle Scholar
Cocke, W., Subnormality and the Chermak–Delgado lattice . J. Algebra Appl. 19(2020), no. 8, 2050141, 7 pp.CrossRefGoogle Scholar
Glauberman, G., Centrally large subgroups of finite p-groups . J. Algebra 300(2006), 480508.CrossRefGoogle Scholar
Isaacs, I. M., Finite group theory, American Mathematical Society, Providence, RI, 2008.Google Scholar
McCulloch, R., Chermak–Delgado simple groups . Comm. Algebra 45(2017), no. 3, 983991.CrossRefGoogle Scholar
McCulloch, R., Finite groups with a trivial Chermak–Delgado subgroup . J. Group Theory 21(2018), no. 3, 449461.CrossRefGoogle Scholar
McCulloch, R. and Tǎrnǎuceanu, M., Two classes of finite groups whose Chermak–Delgado lattice is a chain of length zero . Comm. Algebra 46(2018), no. 7, 30923096.CrossRefGoogle Scholar
McCulloch, R. and Tǎrnǎuceanu, M., On the Chermak–Delgado lattice of a finite group . Comm. Algebra 48(2020), no. 1, 3744.CrossRefGoogle Scholar
Morresi Zuccari, A., Russo, V., and Scoppola, C. M., The Chermak–Delgado measure in finite p-groups . J. Algebra 502(2018), 262276.CrossRefGoogle Scholar
Schmidt, R., Subgroup lattices of groups, Walter de Gruyter, Berlin, New York, 1994.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., The Chermak–Delgado lattice of ZM-groups . Results Math. 72(2017), no. 4, 18491855.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., A note on the Chermak–Delgado lattice of a finite group . Comm. Algebra. 46(2018), no. 1, 201204.CrossRefGoogle Scholar
Tǎrnǎuceanu, M., Finite groups with a certain number of values of the Chermak–Delgado measure . J. Algebra Appl. 19 (2020), no.5, 2050088, 7 pp.CrossRefGoogle Scholar
Wilcox, E., Exploring the Chermak–Delgado lattice . Math. Magazine 89(2016), no. 1, 3844.CrossRefGoogle Scholar