Published online by Cambridge University Press: 02 December 2021
Let G be a group, and let g be a nontrivial element in G. If some nonempty finite product of conjugates of g equals the identity, then g is called a generalized torsion element. We say that a knot K has generalized torsion if
$G(K) = \pi _1(S^3 - K)$
admits such an element. For a
$(2, 2q+1)$
-torus knot K, we demonstrate that there are infinitely many unknots
$c_n$
in
$S^3$
such that p-twisting K about
$c_n$
yields a twist family
$\{ K_{q, n, p}\}_{p \in \mathbb {Z}}$
in which
$K_{q, n, p}$
is a hyperbolic knot with generalized torsion whenever
$|p|> 3$
. This gives a new infinite class of hyperbolic knots having generalized torsion. In particular, each class contains knots with arbitrarily high genus. We also show that some twisted torus knots, including the
$(-2, 3, 7)$
-pretzel knot, have generalized torsion. Because generalized torsion is an obstruction for having bi-order, these knots have non-bi-orderable knot groups.
Dedicated to the memory of Toshie Takata. The first-named author has been partially supported by JSPS KAKENHI Grant Number 19K03502 and Joint Research Grant of the Institute of Natural Sciences at Nihon University for 2021. The second-named author has been supported by JSPS KAKENHI Grant Number 20K03587.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.