Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T09:50:05.403Z Has data issue: false hasContentIssue false

First Variation Formula in Wasserstein Spaces over Compact Alexandrov Spaces

Published online by Cambridge University Press:  20 November 2018

Nicola Gigli
Affiliation:
Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germanye-mail: nicolagigli@googlemail.com
Shin-Ichi Ohta
Affiliation:
Department of Mathematics, Kyoto University, Kyoto 606-8502, Japane-mail: sohta@math.kyoto-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We extend results proved by the second author (Amer. J. Math., 2009) for nonnegatively curved Alexandrov spaces to general compact Alexandrov spaces $X$ with curvature bounded below. The gradient flow of a geodesically convex functional on the quadratic Wasserstein space $\left( \mathcal{P}\left( X \right),\,{{W}_{2}} \right)$ satisfies the evolution variational inequality. Moreover, the gradient flow enjoys uniqueness and contractivity. These results are obtained by proving a first variation formula for the Wasserstein distance.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Ambrosio, L., Gigli, N., and Savaré, G., Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH, Birkhäuser Verlag, Basel, 2005.Google Scholar
[2] Burago, D., Burago, Y., and Ivanov, S., A course in metric geometry. Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001.Google Scholar
[3] Burago, Y., Gromov, M., and Perel’man, G., A. D. Alexandrov spaces with curvatures bounded below (Russian). Uspekhi Mat. Nauk 47(1992), no. 2(284), 3–51, 222; English translation in Russian Math. Surveys 47(1992), no. 2, 158.Google Scholar
[4] Gigli, N., On the inverse implication of Brenier-McCann theorems and the structure of (P2(M),W2). 2009, http://cvgmt.sns.it/people/gigli/ Google Scholar
[5] Jordan, R., Kinderlehrer, D., and Otto, F., The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29(1998), no. 1, 117. http://dx.doi.org/10.1137/S0036141096303359 Google Scholar
[6] Kuwae, K., Machigashira, Y., and Shioya, T., Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z. 238(2001), no. 2, 269316. http://dx.doi.org/10.1007/s002090100252 Google Scholar
[7] Lott, J. and Villani, C., Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. 169(2009), no. 3, 903991. http://dx.doi.org/10.4007/annals.2009.169.903 Google Scholar
[8] Lytchak, A., Open map theorem for metric spaces. St. Petersburg Math. J. 17(2006), no. 3, 477491.Google Scholar
[9] McCann, R. J., Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(2001), no. 3, 589608. http://dx.doi.org/10.1007/PL00001679Google Scholar
[10] McCann, R. J. and Topping, P., Ricci flow, entropy and optimal transportation. Amer. J. Math. 132(2010), no. 3, 711730. http://dx.doi.org/10.1353/ajm.0.0110 Google Scholar
[11] Ohta, S., Gradient flows on Wasserstein spaces over compact Alexandrov spaces. Amer. J. Math. 131(2009), no. 2, 475516. http://dx.doi.org/10.1353/ajm.0.0048 Google Scholar
[12] Ohta, S. and Sturm, K.-T., Heat flow on Finsler manifolds. Comm. Pure Appl. Math. 62(2009), no. 10, 13861433. http://dx.doi.org/10.1002/cpa.20273 Google Scholar
[13] Otsu, Y. and Shioya, T., The Riemannian structure of Alexandrov spaces. J. Differential Geom. 39(1994), no. 3, 629658.Google Scholar
[14] Otto, F., The geometry of dissipative evolution equations: the porous medium equation. Comm. Partial Differential Equations 26(2001), no. 1–2, 101174. http://dx.doi.org/10.1081/PDE-100002243 Google Scholar
[15] Perel’man, G. and Petrunin, A., Quasigeodesics and gradient curves in Alexandrov spaces. 1995, http://www.math.psu.edu/petrunin/ Google Scholar
[16] von Renesse, M.-K. and Sturm, K.-T., Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl.Math. 58(2005), no. 7, 923940. http://dx.doi.org/10.1002/cpa.20060 Google Scholar
[17] Savaré, G., Gradient flows and diffusion semigroups in metric spaces under lower curvature bounds. C. R. Math. Acad. Sci. Paris 345(2007), no. 3, 151154.Google Scholar
[18] Sturm, K.-T., Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84(2005), no. 2, 149168. http://dx.doi.org/10.1016/j.matpur.2004.11.002 Google Scholar
[19] Sturm, K.-T., On the geometry of metric measure spaces. I. Acta Math. 196(2006), no. 1, 65131. http://dx.doi.org/10.1007/s11511-006-0002-8 Google Scholar
[20] Villani, C., Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften, 338, Springer-Verlag, Berlin, 2009.Google Scholar