No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $R$ be a real closed field, let
$X\,\subset \,{{R}^{n}}$ be an irreducible real algebraic set and let
$Z$ be an algebraic subset of
$X$ of codimension ≥ 2. Dubois and Efroymson proved the existence of an irreducible algebraic subset of
$X$ of codimension 1 containing
$Z$. We improve this dimension theorem as follows. Indicate by
$\mu$ the minimum integer such that the ideal of polynomials in
$R\left[ {{x}_{1}}\,,\,.\,.\,.\,,\,{{x}_{n}} \right]$
vanishing on
$Z$ can be generated by polynomials of degree
$\le \,\mu$. We prove the following two results: (1) There exists a polynomial
$P\,\in \,R\left[ {{x}_{1}}\,,\,.\,.\,.\,,\,{{x}_{n}} \right]$
of degree
$\le \,\mu +1$ such that
$X\cap {{P}^{-1}}\left( 0 \right)$
is an irreducible algebraic subset of
$X$ of codimension 1 containing
$Z$. (2) Let
$F$ be a polynomial in
$R\left[ {{x}_{1}}\,,\,.\,.\,.\,,\,{{x}_{n}} \right]$
of degree
$d$ vanishing on
$Z$. Suppose there exists a nonsingular point
$x$ of
$X$ such that
$F\left( x \right)\,=\,0$ and the differential at
$x$ of the restriction of
$F$ to
$X$ is nonzero. Then there exists a polynomial
$G\,\in \,R\left[ {{x}_{1}}\,,\,.\,.\,.\,,\,{{x}_{n}} \right]$
of degree
$\le \,\max \{d,\,\mu \,+\,1\}$ such that, for each
$t\,\in \,\left( -1,\,1 \right)\,\backslash \,\{0\}$, the set
$\{x\in X|F\left( x \right)+tG\left( x \right)=0\}$ is an irreducible algebraic subset of
$X$ of codimension 1 containing
$Z$. Result (1) and a slightly different version of result (2) are valid over any algebraically closed field also.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.