Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T21:59:01.506Z Has data issue: false hasContentIssue false

Elliptic Curves and Modular Forms

Published online by Cambridge University Press:  20 November 2018

M. Ram Murty*
Affiliation:
McGill University, Montréal, Québec
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This is a survey of some recent developments in the theory of elliptic curves. After an informal discussion of the main theorems of the arithmetic side of the theory and the open problems confronting the subject, we describe the recent work of K. Rubin, V. Koly vagin, K. Murty and the author which establishes the finiteness of the Shafarevic-Tate group for modular elliptic curves of rank zero and one.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

1. Bump, D., S. Friedberg and Hoffstein, J., Non-vanishing theorems for L-functions of modular forms and their derivatives, Invent. Math. 102 (1990), 543618.Google Scholar
2. Gross, B. and Zagier, D., Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225320.Google Scholar
3. Koly, V. A. vagin, Finiteness ofE(Q) and l\lE/ Q for a subclass of Weil curves, Izv. Akad. Nauk. SSSR Ser. Math. 52 (1988), 522540; English transi, in Math. USSR Izv. 32(1989).Google Scholar
4. Ram Murty, M., On simple zeroes of certain L-series , in Number Theory, Proceedings of the Banff conference, (ed. R. Mollin), 1990,427-439, Walter de Gruyter.Google Scholar
5. Ram, M. Murty, and V. Kumar Murty, Mean values of derivatives of modular L-series, Annals of Mathematics, 133 (1991), 447475.Google Scholar
6. Rubin, K., Tate-Shafarevic groups and L-functions of elliptic curves with complex multiplication, In v. Math. (3)89 (1987), 527559.Google Scholar
7. Silverman, J., The arithmetic of elliptic curves. Springer-Verlag, New York, 1986.Google Scholar