Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T16:01:34.752Z Has data issue: false hasContentIssue false

The Conjugate Function in Plane Curves

Published online by Cambridge University Press:  20 November 2018

Jose J. Guadalupe
Affiliation:
Dpto de matematicas-Facultad de Ciencias, Universidad de Zaragoza50009, Zaragoza - Spain
Ma Luisa Rezola
Affiliation:
Dpto de matematicas-Facultad de Ciencias, Universidad de Zaragoza50009, Zaragoza - Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the conjugate function operator is bounded in Lp(Г, wds), 1 < p < ∞, if and only if wAp(Г), where Г is a quasiregular curve.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1988

References

1. Coifman, R. R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), pp. 241249.Google Scholar
2. Garnett, J. B. and Jones, P., The distance in BMO to L , Ann. of Math. II. Ser. 108, (1978), pp. 373393.Google Scholar
3. Jerison, D. S. and Kenig, C. E., Hardy Spaces. A and Singular Integrals on Chord-arc Domains, Math. Scand. 50 (1982), pp. 221247.Google Scholar
4. Jones, P. and Zinsmeister, M., Sur la transformation conforme des domaines de Laurentiev, C. R. Acad. Sci. (Paris) 295 (1982), pp. 563566.Google Scholar
5. Pommerenke, Ch., Schlichte functionen und analytische functionen von beschrankter mittlerer oszillation, Comm. Math. Helv. 52 (1977), pp. 591602.Google Scholar
6. Zinsmeister, M., Courbes de Jordan vérifiant une condition corde-arc, Ann. Inst. Fourier 32, No. 2, (1982), pp. 1321.Google Scholar
7. Zygmund, A., Trigonometric Series, Cambridge Univ. Press, London, New York, 1959.Google Scholar