Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that the conjugate function operator is bounded in Lp(Г, wds), 1 < p < ∞, if and only if w ∈ Ap(Г), where Г is a quasiregular curve.
1.Coifman, R. R. and Fefferman, C., Weighted norm inequalities for maximal functions and singular integrals, Studia Math.51 (1974), pp. 241–249.Google Scholar
2
2.Garnett, J. B. and Jones, P., The distance in BMO to L∞, Ann. of Math. II. Ser. 108, (1978), pp. 373–393.Google Scholar
3
3.Jerison, D. S. and Kenig, C. E., Hardy Spaces. A∞ and Singular Integrals on Chord-arc Domains, Math. Scand.50 (1982), pp. 221–247.Google Scholar
4
4.Jones, P. and Zinsmeister, M., Sur la transformation conforme des domaines de Laurentiev, C. R. Acad. Sci. (Paris)295 (1982), pp. 563–566.Google Scholar
5
5.Pommerenke, Ch., Schlichte functionen und analytische functionen von beschrankter mittlerer oszillation, Comm. Math. Helv.52 (1977), pp. 591–602.Google Scholar
6
6.Zinsmeister, M., Courbes de Jordan vérifiant une condition corde-arc, Ann. Inst. Fourier32, No. 2, (1982), pp. 13–21.Google Scholar
7
7.Zygmund, A., Trigonometric Series, Cambridge Univ. Press, London, New York, 1959.Google Scholar