Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T19:45:32.211Z Has data issue: false hasContentIssue false

The Chowla-Selberg Method for Fourier Expansion of Higher Rank Eisenstein Series

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The terms of maximal rank in Fourier expansions of Eisenstein series for GL(n, ℤ) are obtained by an analogue of a method of Chowla and Selberg. The coefficients involve matrix analogues of divisor functions as well as K-Bessel functions for GL(n). The discussion involves a few properties of Hecke operators.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1985

References

1. Arthur, J., The trace formula for noncompact quotient, Proc. Intl. Cong. Math ., Warsaw, 1983.Google Scholar
2. Bengtson, T., Besselfunctions on Pacific J. Math., 108 (1983), pp. 1930.Google Scholar
3. Bump, D., Automorphic Forms on GL(3, ℝ), Lecture Notes in Math ., 1083, Springer, N.Y., 1984.Google Scholar
4. Bump, D. and Goldfeld, D., A Kronecker limit formula for cubic fields, in Rankin, R.A. (ed.), Modular Forms, Horwood (Wiley), Chichester, 1984, pp. 4349.Google Scholar
5. Chowla, S. and Selberg, A., On Epstein s zeta function, J. Reine Angew. Math., 227 (1967), pp. 86110.Google Scholar
6. Gelbaert, S. and Jacquet, H., A relation between automorphic forms on GL2 and GL3 , Ann. Scient. Ec. Norm. Sup., 4e série, 11 (1978), pp. 471542.Google Scholar
7. Hecke, E., Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1970.Google Scholar
8. Hejhal, D., The Selberg Trace Formula for PSL(2, ℝ), Vols. I, II, Lecture Notes in Math. 548, 1001, Springer, N.Y., 1976, 1983.Google Scholar
9. Helgason, S., Lie groups and symmetric spaces, in Battelle Rencontres , ed. DeWitt, C.M. and Wheeler, J.A., Benjamin, N.Y., 1968, pp. 171.Google Scholar
10. Herz, C., Bessel functions of matrix argument, Ann. of Math., 61 (1955), pp. 474523.Google Scholar
11. Hey, K., Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen, Inaug.-Diss., Hamburg, 1929.Google Scholar
12. Imai, K. and Terras, A., Fourier expansions of Eisenstein series for GL(3, ℤ), Trans. Amer. Math. Soc., 273(1982), pp. 679694.Google Scholar
13. Jacquet, H., Les fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. Math. France, 95(1967), pp. 243309.Google Scholar
14. Jacquet, H., I. I.|Piatetskii-Shapiro and Shalika, J., Automorphic forms on GL(3), I, II, Ann. of Math., 109 (1979), pp. 169212, 213-258.Google Scholar
15. Kirillov, A.B., Unitary representations of nilpotent Lie groups, Russ. Math. Surveys, 17 (1962), pp. 53104.Google Scholar
16. Koecher, M., Über Dirichlet-Reihen mit Funktionalgleichung, J. Reine Angew. Math., 192 (1953), pp. 123.Google Scholar
17. Langlands, R.P., Eisenstein Series, Lecture Notes in Math ., 544, Springer, N.Y., 1976.Google Scholar
18. Maass, H., Siegels Modular Forms and Dirichlet Series, Lecture Notes in Math ., 216, Springer, N.Y., 1971.Google Scholar
19. Maass, H., Die Primzahlen in der Théorie der Siegelschen Modulfunktionen, Math. Ann., 124 (1951), pp. 87122.Google Scholar
20. Mennicke, J., Vorträge über Selbergs Spurformel, I, Ü. Bielefeld, W. Germany.Google Scholar
21. Minkowski, H., Gesammelte Abhandlungen, Chelsea, N.Y., 1911, reprinted, 1967.Google Scholar
22. Moreno, C. and Shahidi, F., The 4th moment of the Ramanujan tau function, Math. Ann. 266 (1983), pp. 233239.Google Scholar
23. Proskurin, N.V., Expansions of automorphic functions, Proc. Steklov Inst. Math., 116 (1982), pp. 119141.Google Scholar
24. Selberg, A., Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc, 20 (1956), pp. 4787.Google Scholar
25. Shahidi, F., On certain L-series, Amer. J. Math., 103 (1981), pp. 297355.Google Scholar
26. Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions, Princeton U. Press, Princeton, N.J., 1971.Google Scholar
27. Siegel, C.L., Gesammelte Abhandlungen, Vols. I, II, III, Springer, N.Y., 1966.Google Scholar
28. Takhtadzyan, L.A. and Vinogradov, A.I., Theory of Eisenstein series for the group SL(3, ℝ) and its application to a binary problem, J. Soviet Math. 18 (1982), pp. 293—324 Google Scholar
29. Terras, A., Fourier coefficients of Eisenstein series of one complex variable for the general linear group, Trans. Amer. Math. Soc, 205 (1975), pp. 97114.Google Scholar
30. Terras, A., Harmonic Analysis on Symmetric Spaces and Applications, Vol. I, II, Springer, N.Y. (to appear).Google Scholar
31. Terras, A., Special functions for the symmetric space of positive matrices, SIAM J. Math. Anal, (in press).Google Scholar
32. Terras, A., Integral formulas and integral tests for series of positive matrices, Pacific J. Math., 89 (1980), pp. 471490.Google Scholar
33. Terras, A., On automorphic forms for the general linear group, Rocky Mt. J. of Math., 12 (1982), pp. 123143.Google Scholar
34. Wallace, D., Conjugacy classes of hyperbolic matrices in SL(n, ℤ) and ideal classes in an order, Trans. Amer. Math. Soc. 283 (1984), pp. 177184.Google Scholar
35. Wallace, D., Explicit form of the hyperbolic term in the trace formula for SL(3, ℤ) and Pell's equation for hyperbolic s in SL(3, ℤ), to appear in J. Number Theory.Google Scholar
36. Wishart, J., The generalized product moment distribution in samples from a normal multivariate population, Biometrika , 20A (1928), pp. 3243.Google Scholar