Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T13:40:16.475Z Has data issue: false hasContentIssue false

Approximation De Fonctions Convexes Sur Un Espace De Mesures Et Applications

Published online by Cambridge University Press:  20 November 2018

R. Temam*
Affiliation:
Analyse Numérique Et Fonctionelle Cnrs Et Université Paris-SudBâtiment 425, 91405-Orsay, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the first part of this article we recall the definition and a few basic properties of convex functionals defined on a space of bounded measures. In the second part we show several results of approximation of the following type: Although a measure μ cannot be approximated in the sense of the norm by smooth functions, we can find an appropriate sequence of smooth functions which converge weakly to the measure μ, the corresponding value of the functional converging to the value of the functional at μ.

This article is part of a series on the existence theory of solution of variational problems of mechanics (perfect plasticity), which is based on a systematic utilization of the methods of convex analysis and the calculus of variations.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1982

References

Bibliographie

1. Bourbaki, N., Topologie Générale, Livre III, Hermann, Paris (1964).Google Scholar
2. Bourbaki, N., Intégration, Livre VI, Hermann, Paris (1965).Google Scholar
3. Brézis, H., Intégrales Convexes dans les Espaces de Sobolev, Israel J. Math., 13 (1972), p.9-23.Google Scholar
4. Ekeland et, I. Temam, R., Analyse Convexe et Problèmes Variationnels, Dunod-Gauthier-Villars, Paris (1974); North-Holland, Amsterdam (1976) (en anglais).Google Scholar
5. Giusti, E., Minimal Surfaces and functions of Bounded Variation, Notes de cours rédigées par G. H.Williams, Department of Mathematics, Australian National University, Canberra, 10 (1977).Google Scholar
6. Goffman, C. and Serrin, J., Sublinear Functions of Measures and Variational Integrals, Duke Math. J., 31 (1964), p. 159-178.Google Scholar
7. Krasnoselskii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon Press, London (1964).Google Scholar
8. Matthies, H., Strang, G., and Christiansen, E., The saddle point of a differential program, in "Energy methods in finite element analysis," Glowinski, R., Rodin, E., Zienkiewicz, O. C., éditeurs, John Wiley, New York, 1979.Google Scholar
9. Moreau, J. J., Fonctionnelles Convexes, Séminaire Equations aux Dérivées Partielles, Collège de France (1966).Google Scholar
10. Rockafellar, R. T., Convex Analysis Princeton University Press, Princeton (1970).Google Scholar
11. Rockafellar, R. T., Integral Functionals, normal integrands and measurable selections, dans Nonlinear Operators and the Calculus of Variations, Lecture Notes in Math., vol. 543, Springer-Verlag, Heidelberg (1976).Google Scholar
12. Rockafellar, R. T., Integral which are convex functionals I and II, Pacific J. Math., 24 (1966), p. 525-539 et 39 (1971), p. 439-469.Google Scholar
13. Suquet, P., Existence et régularité des solutions des équations de la plasticité parfaite, Thèse de 3ème cycle, Université de Paris VI (1978) et C.R.Ac.Sc. Paris, 286, Série D, (1978), p. 1201-1204.Google Scholar
14. Strang et, G. Temam, R., Functions of bounded deformation, Arch. Rat. Mech. Anal., 75 (1980) p. 7-21.Google Scholar
15. Strang et, G. Temam, R., Duality and Relaxation in plasticity. Journal de Mécanique, 19 (1980) p. 493-527.Google Scholar
16. Temam, R., Applications de l' Analyse Convexe au Calcul des Variations, dans Nonlinear Operator and the Calculus of Variations, Lecture Notes in Math., vol. 543, Springer-Verlag, Heidelberg (1976).Google Scholar
17. Temam, R., Mathematical Problems in Plasticity, dans "Complementarity Problems and variational Inequalities" Gianessi, F., Cottle, , Lions, J. L., editors, John Wiley, New York, 1979.Google Scholar
18. Temam, R., Existence theorems for the variational problems of plasticity, dans Nonlinear problems of Analysis in Geometry and Mechanics, Atteia Bancel et Gumowski, éd., Pitman, London, 1981.Google Scholar
19. Temam, R., On the continuity of the trace of vector functions with bounded deformation, Applicable Analysis, 11 (1981), p. 291-302.Google Scholar