No CrossRef data available.
Published online by Cambridge University Press: 27 December 2023
We prove a conjectural formula for the Brumer–Stark units. Dasgupta and Kakde have shown the formula is correct up to a bounded root of unity. In this paper, we resolve the ambiguity in their result. We also remove an assumption from Dasgupta–Kakde’s result on the formula.
 $L$
-series at
$L$
-series at 
 $s=0$
 and the scarcity of Euler systems. Preprint, 2021. arXiv:2111.14689
Google Scholar
$s=0$
 and the scarcity of Euler systems. Preprint, 2021. arXiv:2111.14689
Google Scholar $L$
-functions at
$L$
-functions at 
 $s=0$
. Invent. Math. 169(2007), no. 3, 451–499.CrossRefGoogle Scholar
$s=0$
. Invent. Math. 169(2007), no. 3, 451–499.CrossRefGoogle Scholar $p$
-adiques
. Invent. Math. 51(1979), no. 1, 29–59.CrossRefGoogle Scholar
$p$
-adiques
. Invent. Math. 51(1979), no. 1, 29–59.CrossRefGoogle Scholar $\mathbb{Z}$
. Preprint, 2023. arXiv:2310.16399
CrossRefGoogle Scholar
$\mathbb{Z}$
. Preprint, 2023. arXiv:2310.16399
CrossRefGoogle Scholar $L$
-functions at negative integers over totally real fields
. Invent. Math. 59(1980), no. 3, 227–286.CrossRefGoogle Scholar
$L$
-functions at negative integers over totally real fields
. Invent. Math. 59(1980), no. 3, 227–286.CrossRefGoogle Scholar $p$
-adic
$p$
-adic 
 $L$
-series at
$L$
-series at 
 $s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1982), no. 3, 979–994.Google Scholar
$s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1982), no. 3, 979–994.Google Scholar $L$
-functions at
$L$
-functions at 
 $s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35(1988), no. 1, 177–197.Google Scholar
$s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 35(1988), no. 1, 177–197.Google Scholar $L(s,\chi)$
at
$L(s,\chi)$
at 
 $s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1982), no. 3, 963–978.Google Scholar
$s=0$
. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1982), no. 3, 963–978.Google Scholar