Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T23:17:25.477Z Has data issue: false hasContentIssue false

A Review of Acrylamide Neurotoxicity Part I. Properties, Uses and Human Exposure

Published online by Cambridge University Press:  18 September 2015

Peter S. Spencer*
Affiliation:
Department of Pathology (Neuropathology), The Saul R. Korey Department of Neurology, and the Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, The Bronx, New York 10461, U.S.A.
Herbert H. Schaumburg
Affiliation:
Department of Pathology (Neuropathology), The Saul R. Korey Department of Neurology, and the Rose F. Kennedy Center for Research in Mental Retardation and Human Development, Albert Einstein College of Medicine, The Bronx, New York 10461, U.S.A.
*
Department of Pathology, 1300 Morris Park Avenue, The Bronx, New York 10461, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two factors have stimulated the present intense investigation of acrylamide neurotoxicity. These are the health hazard accompanying the vast and increasing industrial production of acrylamide, and the promise of illuminating the mechanism of dying-back disease in the human nervous system by employing acrylamide as an experimental tool. The present paper discusses the industrial uses of acrylamide, its regulation, and the prevention, detection and clinico-pathologic features of human intoxication. Bearing on the cumulative nature of acrylamide neurotoxicity, separate sections review the chemistry, biochemistry, toxicology and metabolic fate of acrylamide. Clinical, electrophysiological and morphologic data on acute and chronic acrylamide intoxication of experimental animals, and possible etiologies of nervous system damage, are considered in detail in a companion paper (P. S. Spencer and H. H. Schaumburg, Canadian Journal of Neurological Sciences, 1:151, 1974).

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1974

References

American Cyanamid Company (1953–1955). Quoted by Kuperman, A.S.(1957).Google Scholar
American Cyanamid Company (1954). New Products Bulletin, III collective, New York.Google Scholar
American Cyanamid Company (1956). Quoted by Kuperman, A.S.(1957).Google Scholar
Ando, K. and Hashimoto, K. (1971). RNA synthesis in rat nervous tissues in acrylamide neuropathy. Proceeding of the Osaka Prefectural Institute of Public Health, No. 9, 58.Google Scholar
Ando, K. and Hashimoto, K. (1972). Accumulation of (14-C)-acrylamide in mouse nerve tissue. Proceeding of the Osaka Prefectural Institute of Public Health, 10, 712.Google Scholar
Anonymous (1967a). Getting on their nerves. British Medical Journal, 4, 125.CrossRefGoogle Scholar
Anonymous (1967b): Japanese Journal of Hygiene (March) p. 68, quoted by Garland, T.O. and Patterson, M.W.H. (1967).Google Scholar
Anonymous (1971). Chemical and Engineering News, 49, 19.Google Scholar
Ashbury, A.K., Cox, S.C. and Kanada, D. (1973). 3H leucine incorporation in acrylamide neuropathy in the mouse. Neurology, 23, 406.Google Scholar
Auld, R.B. and Bedwell, S.F. (1967). Peripheral neuropathy with sympathetic overactivity from industrial contact with acrylamide, Canadian Medical Association Journal, 96, 652654.Google ScholarPubMed
Barnes, J.M. (1969). Toxic substances and the nervous system. Scientific Basis of Medicine Annual Reviews, 183201.Google Scholar
Barnes, J.M. (1970). Observations on the effects on rats of compounds related to acrylamide. British Journal of Industrial Medicine, 27, 147149.Google ScholarPubMed
Bikales, N.M. (1970). Acrylamide and related amides. In: High Polymers, 24, 1, Vinyl and Diene Monomers (ed. Leonard, E.C.) 81104, John Wiley and Sons Inc.Google Scholar
Bikales, N.M. (1973). Preparation of acrylamide polymers. In: Water-Soluble Polymers, ed. Bikales, N. M.Polymer Science and Technology, 2, 213225, Plenum Press, New York.Google Scholar
Bikales, N.M. (1974). Personal Communication. Google Scholar
Bikales, N.M. and Kolodny, E.R. (1963). Acrylamide. In: Encyclopedia of Chemical Technology, 2nd ed. Standen, A.274284, Interscience, New York.Google Scholar
Cavigneaux, A. and Cabasson, G.B. (1972). Intoxication par l’acrylamide. Arch. Mal. Prof. Med. Trav. Secur. Soc, 23, 115116.Google Scholar
Cavins, J..F. and Friedman, M. (1967a). Specific modification of protein sulfhydryl groups with α β-unsaturated compounds. Federation Proceedings, 26, 822.Google Scholar
Cavins, J.F. and Friedman, M. (1967b). New amino acids derived from reactions of E-amino groups in proteins with α β, -unsaturated compounds. Biochemistry, 6, 37663770.CrossRefGoogle Scholar
Croll, B.T. (1973). The determination of acrylamide in polyelectrolytes by extraction and gas chromatographic analysis. Analyst, 96, 6777.CrossRefGoogle Scholar
Druckrey, H., Consbruch, U. and Schmähl, D. (1953). Effects of monomeric acrylamide on proteins. Zeitschrift für Naturforschung, 86, 145150.CrossRefGoogle Scholar
Edwards, P. M. (1972). Personal communication.Google Scholar
Edwards, P.M. (1973). The neurotoxicity and conversion of N-hydroxymethylacrylamide in vivo. Biochemical Society Transactions 544th meeting, 1, 153154.Google Scholar
Fassett, D.W. (1963). Organic acids, anhydrides, lactones, acid halides and amides, thioacids. In: Industrial Hygiene and Toxicology, ed. Patty, F.A. , 2, Toxicology (eds. Fassett, D.W. and Irish, D.D.) 18321835, Interscience, New York.Google Scholar
Flock, H.G. and Rausch, E.G. (1973). Application of polyelectrolytes in municipal waste treatment. In: Water-Soluble Polymers, ed., Bikales, N.M.Polymer Science and Technology, 2, 2173, Plenum Press, New York.Google Scholar
Fujita, A.Shibata, J., Kato, H., Itomi, K., Sujuki, K., Nakazwa, T. and Takahashi, T. (1960). Clinical observations on acrylamide poisoning. Nippon Iji Shimpo, 1869, 2740.Google Scholar
Fullerton, P.M. (1969a). Electrophysiological and histological observations on peripheral nerves in acrylamide poisoning in man. Journal of Neurology, Neurosurgery and Psychiatry, 32, 186192.CrossRefGoogle ScholarPubMed
Fullerton, P.M. (1969b). Toxic chemicals and peripheral neuropathy: clinical and epidemiological features. Proceedings of the Royal Society of Medicine, 62, 201204.CrossRefGoogle ScholarPubMed
Fullerton, P.M. (1970). Acrylamide toxicity in man. Electroencephalography and Clinical Neurophysiology, 28, 426.Google ScholarPubMed
Fullerton, P.M. and Barnes, J.M. (1966). Peripheral neuropathy in rats produced by acrylamide. British Journal ofIndustrial Medicine, 23, 210221.Google ScholarPubMed
Garland, T.O. and Patterson, M.W.H. (1967). Six cases of acrylamide poisoning. British Medical Journal, 4, 134138.CrossRefGoogle ScholarPubMed
Golz, H.H.Personal communications quoted by Fassett, D.W. (1962), Fullerton, P.M. and Barnes, J.M. (1966).Google Scholar
Graveleau, J., Loirat, P. and Nusinovici, V. (1970). Polynévrite par l’acrylamide. Revue Neurologie, 123, 6265.Google Scholar
Hamblin, D.O. (1956). The toxicity of acrylamide — a preliminary report. In: Hommage Au Doyen René Fabre, Membre De 1–Institut, Professeur De Toxicologic A La Faculté De Pharmacie De Paris, 159199, S.E.D.E.S., Paris.Google Scholar
Hashimoto, K. Quoted by Hopkins, A.P. (1968).Google Scholar
Hashimoto, K. (1968). Quoted by Barnes, J.M. (1969).Google Scholar
Hashimoto, K. (1972). Personal communication.Google Scholar
Hashimoto, K. and Aldridge, W.N. (1970). Biochemical studies on acrylamide: a neurotoxic agent. Biochemical Pharmacology, 19, 25912604.CrossRefGoogle ScholarPubMed
Hashimoto, K. and Ando, K. (1971). Studies on acrylamide neuropathy. Effects on the permeability of amino acid into nervous tissues, distribution and metabolism. Proceedings of the Osaka Prefectural Institute of Public Health, 9, 14.Google Scholar
Hashimoto, K. and Ando, K. (1973). Alteration of amino acid incorporation into proteins of the nervous system in vitro after administration of acrylamide to rats. Biochemical Pharmacology, 22, 10571066.Google ScholarPubMed
Hazleton, L.W. (1951–1953). Unpublished studies, quoted by Kuperman, A.S. (1957).Google Scholar
Hoover, M.F. (1970). Bactericidal quaternary diallyl ammonium polymers. U.S. Patent 3, 539,684 (Calgon Corporation).Google Scholar
Hopkins, A.P. (1968). Experimental neuropathy in the baboon. M. D. Thesis, University of London, London.Google Scholar
Hopkins, A.P. and Gilliatt, R.W. (1971). Motor and sensory conduction velocity in the baboon; normal values and changes during acrylamide neuropathy. Journal of Neurology, Neurosurgery and Psychiatry, 34, 415426.CrossRefGoogle ScholarPubMed
Ismailova, S. (1966). Suppression of the development of plant tumor (tomato cancer) by inhibitors of free radicals. Mater. Sess. Zakavkaz. Sov. Koord. Nauch. - Issled. Rab. Zashch. Rast., 412415.Google Scholar
Ismailova, S., Kozlov, Y.P., Gasanov, R.A. (1966). Kinetic characteristics of the antitumor activity of monomers in tissue cultures. Dokl. Akad. Nauk. Azerb. SSR, 22, 7477.Google Scholar
Kaplan, M.L., Murphy, S.D. and Gilles, F.H. (1973). Modification of acrylamide neuropathy in rats by selected factors. Toxicology and Applied Pharmacology, 24, 564579.CrossRefGoogle ScholarPubMed
Kuperman, A.S. (1957). The pharmacology of acrylamide. Ph.D. Thesis, Cornell University, New York.Google Scholar
Kuperman, A.S. (1958). Effects of acrylamide on the central nervous system of the cat. Journal of Pharmacology and Experimental Therapeutics, 123, 180192.Google ScholarPubMed
Lazareva, G.I. (1967). Experimental data for a study of polyacrylamide, brand AMF, used in hydraulic engineering. Mater, Nauch.-Prakt. Konf. Molodykh. Gig. Sank. Vrachei., 11, 4446.Google Scholar
Leggat, P.O. (1962). Ethionamide neuropathy. Tubercle, 43, 9596.CrossRefGoogle ScholarPubMed
Mac Williams, D.C., Rogers, J. H. and West, T.J. (1973). Water-soluble polymers in petroleum recovery In: Water-Soluble Polymers. ed. Bikales, N.M.Polymer Science and Technology, 2, 105126, Plenum Press, New York.Google Scholar
Masuoka, S. (1965). Personal communication to Sankyo Industries, quoted by Hopkins, A.P. (1968).Google Scholar
Mattocks, A.R. (1968). Spectrophotometry determination of pyrazolines and some acrylic amides and esters. Analytical Chemistry, 40, 13471349.CrossRefGoogle Scholar
Mattocks, A.R. Quoted by Hopkins, A.P. (1968).Google Scholar
Mccollister, D.D., Oyen, F. and Rowe, V.K. (1964). Toxicology of acrylamide. Toxicology and Applied Pharmacology, 6, 172181.CrossRefGoogle Scholar
Miyaji, T. (1971). Acute and chronic toxicity of- furylfuramide in rats and mice. Tohohu Journal of Experimental Medicine, 103, 331369.Google ScholarPubMed
Morviller, P. (1969). An industrial, poison not well known in France: acrylamide. Arch. Mai. Prof. Med. Trav. Secur. Soc, 30, 527530.Google Scholar
Pegum, J.S. and Medhurst, F.A. (1971). Contact dermatitis from penetration of rubber gloves by acrylic monomer. British Medical Journal, 2, 141143.CrossRefGoogle ScholarPubMed
Pleasure, D.E. (1973). Personal communication. Google Scholar
Poole, G.W. and Schneeweiss, J. (1961). Peripheral neuropathy due to ethionamide. Annual Review of Respiratory Diseases, 84, 890892.Google Scholar
Rakhaminina, N.A. (1966). A hygienic evaluation of the polyacrylamide method used for the purification of water on ships. Bull. Inst. Mar. Med. Gdansk., 17, 217221.Google Scholar
Regelson, W. (1973). The biologic activity of water-soluble polymers. In: Water-Soluble Polymers, ed. Bikales, N.M.Polymer Science and Technology, 2, 161177, Plenum Press, New York.Google Scholar
Restaino, A.J. (1970). Water-soluble polymers as flocculation agents. Ger. Offen., 1, 961,101.Google Scholar
Ribelin, W.E. (1964). Acrylamide toxicity. Special studies conducted by the pathology group. American Cyanamid Company Internal Internal Memorandum, (quoted by permission).Google Scholar
Schaumburg, H.H., Spencer, P.S., Wísniewski, H., Ghetti, B. and Cook, R.D. (1973). Experimental acrylamide neuropathy — a light microscope, ultrastructural and clinical study. Journal of Neuropathology and Experimental Neurology, 32, 171.Google Scholar
Schaumburg, H.H., Wisniewski, H. and Spencer, P.S. (1974). Ultrastructural studies of the dying-back process. I. Peripheral nerve terminal and axon degeneration in systemic acrylamide intoxication. Journal of Neuropathology and Experimental Neurology, 33, 260284.CrossRefGoogle ScholarPubMed
Shaffer, C.B. (1973). Personal communication. Shaffer, C.B. (1973). Quoted by Fassett, D.W.Google Scholar
Spencer, P.S. and Schaumburg, H.H. (1974). A review of acrylamide neurotoxicity. Part 2: Experimental animal neurotoxicity and pathologic mechanisms. Canadian Journal of Neurological Sciences. 1: 151, foll. 1974.CrossRefGoogle Scholar
Stokinger, H.E. (1956). In: Recent Industrial Hygiene Developments in the Field of Toxicology. American Industrial Hygiene Association Quarterly, 17, 340344.CrossRefGoogle Scholar
Sussman, D.L. and Chun-Chin Wang, E. (1973). Flocculation of chrome-plating wastes with poly electrolytes. In: Water-Soluble Polymers, ed. Bikales, N. M.Polymer Science and Technology, 2, 7591, Plenum Press, New York.Google Scholar
Takahashi, M., Ohara, T. and Hashimoto, K. (1971). Electrophysiological study of nerve injuries in workers handling acrylamide. Int. Arch. Arbeitsmed., 28, 111.CrossRefGoogle ScholarPubMed
Tala, E. and Tevola, K. (1969). Side effects and toxicity of ethionamide and prothionamide. Annals of Clinical Research, 1, 3235.Google ScholarPubMed
Tarusov, E.N., Kozlov, Y.P. and Urtile, S. (1966). Radical polymerization of acrylamide in irradiated tissue homogenates of rats. Tr. Moskov. Obshchest, Ispyt. Prir. Otd. Biol., 16, 4749.Google Scholar
Tarusov, E.N., Kozlov, Y.P., Limarenko, I.M. and Paoshen, H. (1966). Study of free-radical processes of animal tissues under x-ray irradiation by means of polymerization technique. Tr. Mosk. Obshchest, Ispyt. Prir. Otd. Biol., 16, 4446.Google Scholar
Tomcufcik, A.S., Willson, S.D., Vogel, A.W. and Sloboda, A. (1961). N,N1-alkylene-bis(acrylamides), N-(acrylamidomethyl)-3-halopropionamides and related compounds: a new series of anti-tumor agents. Nature, 191, 611612.CrossRefGoogle Scholar
West, R. (1959). American Cyanamid Company Interoffice Correspondence (quoted by permission).Google Scholar
Wiles, J.S. and Narcisse, J.K. (1971). The acute toxicity of dimethylamides in several animal species. American Industrial Hygiene Association Journal, 32, 539545.CrossRefGoogle ScholarPubMed
Wilke, G. (1952). Zur Theorie der Hirnschwellung als Polymerisationproblem. Ein Beitrag zur Frage der Entgiftung toxisch wirkender ungesattigter Verbindungen durch Polymerisationskatalyse. Deutsche Zeitschrift Verdaurungskr., 168, 459463.Google Scholar
Wilke, G. (1953). The polymerization of acrylamide to polyacrylamide caused by animal tissue, tissue extract and protein. Naturwissenshaften, 40, 319.CrossRefGoogle Scholar
Wilke, G. and Gensel, H. (1951). Zur pathogenese der Hirnsphwellung zugleich ein Beitrag zur Frage der katalysierenden Wirkung des Hirngewebes auf Polymerisations-vorgänge. Naturwissenschaften, 38, 532.CrossRefGoogle Scholar
Wilke, G. and Gensel, H. (1952). Zur pathogenese der Hirnschwellung Zugleich ein Beitrag zur Frage katalysierenden Wirkungdes Hirngewebes auf Polymerisations-vorgänge. Arch. Psychiat., 187, 424434.CrossRefGoogle Scholar
Yocum, R.H., and Nyquist, E.B. (1973). Functional Monomers, Marcel Dekker, Inc., New York.Google Scholar
Ziegler, T.F. (1969). Acrylamide toxicity; residue in rat urine. American Cyanamid Company Interoffice Correspondence (quoted by permission).Google Scholar