Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T21:52:15.178Z Has data issue: false hasContentIssue false

Resiniferatoxin Mediated Ablation of TRPV1+ Neurons Removes TRPA1 as Well

Published online by Cambridge University Press:  02 December 2014

László Pecze
Affiliation:
Institute of Biochemistry, University of Szeged
Péter Pelsőczi
Affiliation:
Institute of Biochemistry, University of Szeged
Miklós Kecskés
Affiliation:
Institute of Biochemistry, University of Szeged
Zoltán Winter
Affiliation:
Institute of Biochemistry, University of Szeged
András Papp
Affiliation:
Biological Research Center of the Hungarian Academy of Sciences, Department of Public Health, University of Szeged
Krisztián Kaszás
Affiliation:
Institute of Biochemistry, University of Szeged
Tamás Letoha
Affiliation:
Institute of Biochemistry, University of Szeged Department of Medical Chemistry, University of Szeged
Csaba Vizler*
Affiliation:
Institute of Biochemistry, University of Szeged
Zoltán Oláh
Affiliation:
Institute of Biochemistry, University of Szeged Acheuron Hungary Ltd., Szeged, Hungary
*
BRC of HAS, Szeged, Hungary-6726, Temesvári krt 62
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

Resiniferatoxin, the most potent agonist of inflammatory pain/vanilloid receptor/cation channel (TRPV1) can be used for neuron subtype specific ablation of pain generating cells at the level of the peripheral nervous system by Ca2+-excytotoxicity. Molecular neurosurgery is an emerging technology either to alleviate severe pain in cancer or treat/prevent different local neuropathies. Our aim was determining sensory modalities that may be lost after resiniferatoxin treatment.

Methods:

Newborn or adult mice were treated with resiniferatoxin, then changes in chemical and heat sensitivity were correlated with alterations of the cell composition of sensory ganglions.

Results:

Only mice treated at adult age became less sensitive to heat stimuli, while both treatment groups lost sensitivity to specific vanilloid agonists of TRPV1 and, interestingly, to allyl-isothiocyanate, a selective agonist of TRPA1. Our in vivo and post mortem analytical results confirmed that TRPV1 and TRPA1 function together and resiniferatoxin-mediated neurosurgery removes both sensor molecules

Discussion:

In adult mice resiniferatoxin causes: i) desensitization to heat and ii) sensitization to cold. Cold hyperalgesia, an imbalance in thermosensation, might be conferred by a prominent cold receptor that is expressed in surviving resiniferatoxin-resistant sensory neurons and compensates for pain signals lost with TRPA1 and TRPV1 double positive cells in the peripheral nervous system.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2009

References

1.Toth, A, Boczan, J, Kedei, N, Lizanecz, E, Bagi, Z, Papp, Z., et al.Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res. 2005 Apr 27;135(1-2):1628.CrossRefGoogle ScholarPubMed
2.Tominaga, M, Caterina, MJ.Thermosensation and pain. J Neurobiol. 2004 Oct;61(1):312.Google Scholar
3.Caterina, MJ, Schumacher, MA, Tominaga, M, Rosen, TA, Levine, JD, Julius, D.The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997 Oct 23;389(6653):81624.Google Scholar
4.Olah, Z, Szabo, T, Karai, L, Hough, C, Fields, RD, Caudle, RM., et al.Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J Biol Chem. 2001 Apr 6;276(14):1102130.Google Scholar
5.Karai, L, Brown, DC, Mannes, AJ, Connelly, ST, Brown, J, Gandal, M., et al.Deletion of vanilloid receptor 1-expressing primary afferent neurons for pain control. J Clin Invest. 2004 May;113(9):134452.Google Scholar
6.Olah, Z, Josvay, K, Pecze, L, Letoha, T, Babai, N, Budai, D., et al.Anticalmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel. PLoS ONE. 2007;2(6):e545.Google Scholar
7.Tominaga, M, Caterina, MJ, Malmberg, AB, Rosen, TA, Gilbert, H, Skinner, K., et al.The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998 Sep;21(3): 53143.Google Scholar
8.Suardiaz, M, Estivill-Torrus, G, Goicoechea, C, Bilbao, A, Rodriguez de Fonseca, F.Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain. 2007 Dec15;133(1-3):99110.Google Scholar
9.Re, G, Barbero, R, Miolo, A, Di Marzo, V.Palmitoylethanolamide, endocannabinoids and related cannabimimetic compounds in protection against tissue inflammation and pain: potential use in companion animals. Vet J. 2007 Jan;173(1):2130.CrossRefGoogle ScholarPubMed
10.Olah, Z, Karai, L, Iadarola, MJ.Protein kinase C(alpha) is required for vanilloid receptor 1 activation. Evidence for multiple signaling pathways. J Biol Chem. 2002 Sep 20;277(38):357529.Google Scholar
11.Jordt, SE, Bautista, DM, Chuang, HH, McKemy, DD, Zygmunt, PM, Hogestatt, ED., et al.Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004 Jan 15;427(6971):2605.CrossRefGoogle ScholarPubMed
12.Story, GM, Peier, AM, Reeve, AJ, Eid, SR, Mosbacher, J, Hricik, TR., et al.ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003 Mar 21;112(6):81929.CrossRefGoogle ScholarPubMed
13.Bautista, DM, Movahed, P, Hinman, A, Axelsson, HE, Sterner, O, Hogestatt, ED., et al.Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA. 2005 Aug 23;102(34):1224852.CrossRefGoogle ScholarPubMed
14.Babes, A, Zorzon, D, Reid, G.Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur J Neurosci. 2004 Nov;20(9):227682.Google Scholar
15.Nagata, K, Duggan, A, Kumar, G, Garcia-Anoveros, J.Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci. 2005 Apr 20;25(16):405261.Google Scholar
16.Bandell, M, Story, GM, Hwang, SW, Viswanath, V, Eid, SR, Petrus, MJ., et al.Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004 Mar 25;41(6):84957.Google Scholar
17.Sawada, Y, Hosokawa, H, Hori, A, Matsumura, K, Kobayashi, S.Cold sensitivity of recombinant TRPA1 channels. Brain Res. 2007 Jul 30;1160:3946.Google Scholar
18.Hergenhahn, M, Kusumoto, S, Hecker, E.On the active principles of the spurge family (Euphorbiaceae). V. Extremely skin-irritant and moderately tumor-promoting diterpene esters from Euphorbia resinifera Berg. J Cancer Res Clin Oncol. 1984;108 (1):98109.Google Scholar
19.Szallasi, A, Blumberg, PM.Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience. 1989;30(2):51520.Google Scholar
20.Caudle, RM, Karai, L, Mena, N, Cooper, BY, Mannes, AJ, Perez, FM., et al.Resiniferatoxin-induced loss of plasma membrane in vanilloid receptor expressing cells. Neurotoxicology. 2003 Dec; 24(6):895908.CrossRefGoogle ScholarPubMed
21.Zhou, HY, Zhang, HM, Chen, SR, Pan, HL.Increased nociceptive input rapidly modulates spinal GABAergic transmission through endogenously released glutamate. J Neurophysiol. 2007 Jan;97 (1):87182.CrossRefGoogle ScholarPubMed
22.Goso, C, Piovacari, G, Szallasi, A.Resiniferatoxin-induced loss of vanilloid receptors is reversible in the urinary bladder but not in the spinal cord of the rat. Neurosci Lett. 1993 Nov 12;162(1-2):197200.Google Scholar
23.Pan, HL, Khan, GM, Alloway, KD, Chen, SR.Resiniferatoxin induces paradoxical changes in thermal and mechanical sensitivities in rats: mechanism of action. J Neurosci. 2003 Apr 1;23(7):29119.Google Scholar
24.Szabo, T, Olah, Z, Iadarola, MJ, Blumberg, PM.Epidural resiniferatoxin induced prolonged regional analgesia to pain. Brain Res. 1999 Sep 4;840(1-2):928.Google Scholar
25.Szallasi, A, Szallasi, Z, Blumberg, PM.Permanent effects of neonatally administered resiniferatoxin in the rat. Brain Res. 1990 Dec 24;537(1-2):1826.Google Scholar
26.Brown, DC, Iadarola, MJ, Perkowski, SZ, Erin, H, Shofer, F, Laszlo, KJ., et al.Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology. 2005 Nov;103(5):10529.Google Scholar
27.Tender, GC, Walbridge, S, Olah, Z, Karai, L, Iadarola, M, Oldfield, EH., et al.Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J Neurosurg. 2005 Mar;102(3):5225.Google Scholar
28.Jancso, G, Jancso-Gabor, A.Effect of capsaicin on morphine analgesia-possible involvement of hypothalamic structures. Naunyn Schmiedebergs Arch Pharmacol. 1980 Apr;311(3): 2858.Google Scholar
29.Ohta, T, Imagawa, T, Ito, S.Novel agonistic action of mustard oil on recombinant and endogenous porcine transient receptor potential V1 (pTRPV1) channels. Biochem Pharmacol. 2007 May 15;73 (10):164656.Google Scholar
30.Jin, HW, Ichikawa, H, Fujita, M, Yamaai, T, Mukae, K, Nomura, K., et al.Involvement of caspase cascade in capsaicin-induced apoptosis of dorsal root ganglion neurons. Brain Res. 2005 Sep 21;1056(2):13944.CrossRefGoogle ScholarPubMed
31.Czaja, K, Burns, GA, Ritter, RC.Capsaicin-induced neuronal death and proliferation of the primary sensory neurons located in the nodose ganglia of adult rats. Neuroscience. 2008 Jan23;154(2):62130.Google Scholar
32.Elekes, K, Helyes, Z, Nemeth, J, Sandor, K, Pozsgai, G, Kereskai, L., et al.Role of capsaicin-sensitive afferents and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity in the mouse. Regul Pept. 2007 Jun 7;141(1-3):4454.Google Scholar
33.Caterina, MJ, Leffler, A, Malmberg, AB, Martin, WJ, Trafton, J, Petersen-Zeitz, KR., et al.Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000 Apr 14;288(5464):30613.Google Scholar
34.Taylor-Clark, TE, Undem, BJ, Macglashan, DW Jr., Ghatta, S, Carr, MJ, McAlexander, MA.Prostaglandin-induced activation of nociceptive neurons via direct interaction with transient receptor potential A1 (TRPA1). Mol Pharmacol. 2008 Feb;73(2):27481.Google Scholar
35.Frederick, J, Buck, ME, Matson, DJ, Cortright, DN.Increased TRPA1, TRPM8, and TRPV2 expression in dorsal root ganglia by nerve injury. Biochem Biophys Res Commun. 2007 Jul 13;358(4): 105864.Google Scholar
36.Ruparel, NB, Patwardhan, AM, Akopian, AN, Hargreaves, KM.Homologous and heterologous desensitization of capsaicin and mustard oil responses utilize different cellular pathways in nociceptors. Pain. 2008 Apr;135(3):2719.Google Scholar
37.Numazaki, M, Tominaga, T, Takeuchi, K, Murayama, N, Toyooka, H, Tominaga, M.Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):80026.Google Scholar
38.Bhave, G, Zhu, W, Wang, H, Brasier, DJ, Oxford, GS, Gereau, RWt. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor (VR1) by direct phosphorylation. Neuron. 2002 Aug 15;35(4):72131.Google Scholar
39.Banvolgyi, A, Pozsgai, G, Brain, SD, Helyes, ZS, Szolcsanyi, J, Ghosh, M., et al.Mustard oil induces a transient receptor potential vanilloid 1 receptor-independent neurogenic inflammation and a non-neurogenic cellular inflammatory component in mice. Neuroscience. 2004;125(2):44959.Google Scholar
40.Gamse, R.Capsaicin and nociception in the rat and mouse. Possible role of substance P. Naunyn Schmiedebergs Arch Pharmacol. 1982 Sep;320(3):20516.Google Scholar
41.Holzer, P, Jurna, I, Gamse, R, Lembeck, F.Nociceptive threshold after neonatal capsaicin treatment. Eur J Pharmacol. 1979 Oct 15;58 (4):5114.Google Scholar
42.Hayes, AG, Scadding, JW, Skingle, M, Tyers, MB.Effects of neonatal administration of capsaicin on nociceptive thresholds in the mouse and rat. J Pharm Pharmacol. 1981 Mar;33(3):1835.Google Scholar
43.Cervero, F, McRitchie, HA.Neonatal capsaicin and thermal nociception: a paradox. Brain Res. 1981 Jun 29;215(1-2):4148.CrossRefGoogle ScholarPubMed
44.Neubert, JK, Mannes, AJ, Karai, LJ, Jenkins, AC, Zawatski, L, Abu-Asab, M., et al.Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia. Mol Pain. 2008;4:3.Google Scholar
45.Davis, JB, Gray, J, Gunthorpe, MJ, Hatcher, JP, Davey, PT, Overend, P., et al.Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 2000 May 11;405(6783):1837.Google Scholar
46.Obata, K, Katsura, H, Mizushima, T, Yamanaka, H, Kobayashi, K, Dai, Y., et al.TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest. 2005 Sep;115(9):2393401.Google Scholar
47.Katsura, H, Obata, K, Mizushima, T, Yamanaka, H, Kobayashi, K, Dai, Y., et al.Antisense knock down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve ligation in rats. Exp Neurol. 2006 Jul;200(1):11223.CrossRefGoogle Scholar
48.Reid, G, Babes, A, Pluteanu, F.A cold- and menthol-activated current in rat dorsal root ganglion neurones: properties and role in cold transduction. J Physiol. 2002 Dec 1;545(Pt 2):595614.Google Scholar
49.Choi, Y, Yoon, YW, Na, HS, Kim, SH, Chung, JM.Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994 Dec;59(3):36976.Google Scholar
50.Takahashi, K, Sato, J, Mizumura, K.Responses of C-fiber low threshold mechanoreceptors and nociceptors to cold were facilitated in rats persistently inflamed and hypersensitive to cold. Neurosci Res. 2003 Dec;47(4):40919.Google Scholar
51.Saade, NE, Massaad, CA, Ochoa-Chaar, CI, Jabbur, SJ, Safieh-Garabedian, B, Atweh, SF.Upregulation of proinflammatory cytokines and nerve growth factor by intraplantar injection of capsaicin in rats. J Physiol. 2002 Nov 15;545(Pt 1):24153.CrossRefGoogle ScholarPubMed
52.Lessard, N, Pare, M, Lepore, F, Lassonde, M.Early-blind human subjects localize sound sources better than sighted subjects. Nature. 1998 Sep 17;395(6699):27880.Google Scholar