Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T22:17:44.906Z Has data issue: false hasContentIssue false

A Prospective Randomized Comparison of CT and MRI Pre-operative Localization for Pallidotomy

Published online by Cambridge University Press:  02 December 2014

Christopher R. Honey
Affiliation:
Division of Neurosurgery, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
Robert A. Nugent
Affiliation:
Division of Neurosurgery, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

During the pallidotomy procedure, is pre-operative localization with MRI more accurate than CT and does it result in a significant difference in surgical outcome?

Methods:

Twenty-four Parkinson's Disease patients received a unilateral pallidotomy for their motor symptoms. Dyskinesia was scored pre- and six weeks postoperatively. All patients had a pre-operative CT scan and MRI to calculate the target co-ordinates. Patients were then randomly selected to proceed with either the CT or MRI coordinates. The final position for the lesion was determined with intraoperative macrostimulation and impedance measurements. The percentage improvement of dyskinesia was noted for each patient and the two groups compared by the Mann-Whitney test. The distance from the final target to the MRI and CT pre-operative co-ordinates were calculated for each patient. The mean distance for each modality was then compared by Student's t-test. The number of electrode repositionings was also recorded for each patient and the two groups compared by the nonparametric Mann-Whitney test.

Results:

Although the MRI co-ordinates were significantly (p<0.023) closer to the final target, this did not translate into a significant reduction in electrode repositionings. There was no significant difference in the improvement in dyskinesia between the two groups.

Conclusion:

The pre-operative MRI co-ordinates were significantly (p=0.023) closer to the final target than those from the CT. The potential advantages and disadvantages of both imaging modalities are reviewed. There was no significant difference in surgical outcome using either MRI or CT for pre-operative localization in pallidotomy.

Résumé:

RÉSUMÉ:Objectif:

Pendant la pallidotomie, la localisation préétoire par RMN est-elle plus prése que par CT scan et la méode de localisation a-t-elle un impact significatif sur le réltat de la chirurgie?

Méodes:

Vingt-quatre patients atteints de la maladie de Parkinson ont subi une pallidotomie unilatéle dont l’indication éit des symptô moteurs. La dyskinée a é éluéavant et six semaines aprèl’intervention. Tous les patients ont eu un CT scan et une RMN péétoire pour calculer les coordonné de la cible. On a ensuite séctionnéu hasard les patients dont on utiliserait les coordonné obtenues par l’une ou l’autre méode au moment de la chirurgie. La position finale de la léon a é dérminépar macrostimulation peropétoire et par des mesures d’impénce. Le pourcentage d’améoration de la dyskinée a é notéour chaque patient et les deux groupes ont é comparépar le test de Mann-Whitney. La distance de la cible finale aux coordonné préétoires obtenues par RMN et CT scan a é calculépour chaque patient. La distance moyenne pour chaque méode a ensuite é comparéau moyen d’un test de t de Student. Le nombre de repositionnements des éctrodes a élement é notéour chaque patient et comparéntre les deux groupes au moyen du test non paraméique de Mann-Whitney.

Réltats:

Bien que les coordonné obtenues par RMN aient é significativement plus rapproché (<.023) de la cible finale, ceci ne s’est pas traduit par une réction significative du nombre de repositionnements des éctrodes. Il n’y avait pas de diffénce significative dans l’améoration des dyskinées entre les deux groupes.

Conclusion:

Les coordonné préétoires obtenues par RMN éient significativement plus prè(<.023) de la cible finale que celle obtenues par CT scan. Les avantages et les dévantages possibles des deux méodes d’imagerie sont revues. Il n’y avait pas de diffénce significative dans le réltat chirurgical quand l’une ou l’autre méode de localisation avait é utiliséavant la pallidotomie.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

1. Laitinen, LV, Bergenheim, AT, Hariz, et al. Leksell’s posteroventral pallidotomy in the treatment of Parkinson’s disease. J Neurosurg 1992; 76: 5361.Google Scholar
2. Samuel, M, Caputo, E, Schrag, A, et al. A study of medial pallidotomy for Parkinson’s disease: clinical outcome, MRI location and complications. Brain 1998; 121: 5975.Google Scholar
3. Smith, JR, Hardy, TL, Rose, DF, et al. Comparison of CT- versus MRI-guided, computer assisted depth electrode implantation. Stereotact Funct Neurosurg 1992; 58: 189193.Google Scholar
4. Cohn, MC, Hudgins, PA, Sheppard, SK, et al. Pre- and postoperative MR evaluation of stereotactic pallidotomy. Am J Neurorad 1998; 19: 10751080.Google Scholar
5. Desaloms, JM, Krauss, JK, Lai, EC, et al. Posteroventral medial pallidotomy for treatment of Parkinson’s disease: pre-operative magnetic resonance imaging features and clinical outcome. J Neurosurg 1998; 89: 194199.Google Scholar
6. Favre, J, Taha, JM, Nguyen, TT, et al. Pallidotomy: a survey of current practice in North America. Neurosurgery 1996; 39: 883890.Google Scholar
7. Kondziolka, D, Bonaroti, E, Baser, S, et al. Outcomes after stereotactically guided pallidotomy for advanced Parkinson’s disease. J Neurosurg 1999; 90: 197202.Google Scholar
8. Lang, AE, Lozano, AM, Montgomery, E, et al. Posteroventral medial pallidotomy in advanced Parkinson’s disease. N Engl J Med 1997; 337: 10361042.Google Scholar
9. Vitek, JL, Bakay, RAE, Hashimoto, T, et al. Microelectrode-guided pallidotomy: technical approach and its application in medically intractable Parkinson’s disease. J Neurosurg 1998; 88: 10271043.CrossRefGoogle ScholarPubMed
10. Giller, CA, Dewey, RB, Ginsburg, MI, et al. Stereotactic pallidotomy and thalamotomy using individual variations of anatomic landmarks for localization. Neurosurgery 1998; 42: 5662.Google Scholar
11. Heilbrun, MP, Koehler, S, McDonald, P, et al. Optimal target localization for ventroposterolateral pallidotomy: the role of imaging, impedance measurement, macrostimulation and microelectrode recording. Stereotact Funct Neurosurg 1997; 69:1927.Google Scholar
12. Mandybur, G, Morenski, J, Kuniyoshi, S, et al. Comparison of MRI and ventriculographic target acquisition for posteroventral pallidotomy. Stereotact Funct Neurosurg 1995; 65: 5459.Google Scholar
13. Gerdes, JS, Hitchon, PW, Neerangun, W, et al. Computed tomography versus magnetic resonance imaging in stereotactic localization. Stereotact Funct Neurosurg 1994; 63: 124129.Google Scholar
14. Kondziolka, D, Dempsey, PK, Lunsford, LD, et al. A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 1992; 30:402406.Google Scholar
15. Goetz, CG, Stebbins, GT, Shale, HM, et al. Utility of an objective dyskinesia rating scale for Parkinson’s disease: inter – and intrarater reliability assessment. Mov Disord 1994; 9: 390394.Google Scholar
16. Honey, CR, Stoessl, AJ, Tsui, JKC, et al. Unilateral pallidotomy for reduction of parkinsonian pain. J Neurosurg 1999; 91: 198201.Google Scholar
17. Kishore, A, Turnbull, IM, Snow, BJ, et al. Efficacy, stability and predictors of outcome of pallidotomy for Parkinson’s disease: six month follow-up with additional 1-year observations. Brain 1997; 120: 729737.CrossRefGoogle ScholarPubMed
18. Hariz, MI, Bergenheim, AT, Fodstad, H. Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotaxic procedures. Acta Neurochir (Wien) 1993;123: 147152.Google Scholar
19. Kawashima, Y, Chen, HJ, Takahashi, A. Application of magnetic resonance imaging in functional stereotactic thalamotomy for the evaluation of individual variations of the thalamus. Stereotact Funct Neurosurg 1992; 58: 3338.Google Scholar
20. Alterman, RL, Kall, BA, Cohen, H, et al. Stereotactic ventrolateral thalamotomy: is ventriculography necessary? Neurosurgery 1995; 37: 717722.Google Scholar
21. Kelly, PJ. Contemporary stereotactic ventralis lateral thalamotomy in the treatment of Parkinsonian tremor and other movement disorders. In: Heilbrun, MP (Ed). Stereotactic Neurosurgery. Baltimore, Williams & Wilkins, 1988, 133148.Google Scholar
22. Brown, RA. Computerized tomography-computer graphics approach to stereotactic localization. J Neurosurg 1979; 50: 715720.Google Scholar
23. Tasker, RR, Dostrovsky, JO, Dolan, EJ. Computerized tomography (CT) is just as accurate as ventriculography for functional stereotactic thalamotomy. Stereotact Funct Neurosurg 1991; 57:157166.Google Scholar
24. Patil, A-A, Hahn, F, Sierra-Rodriguez, J, et al. Anatomical structures in the Leksell pallidotomy target. Stereotact Funct Neurosurg 1998; 70: 3237.Google Scholar
25. Spiegelmann, R, Gofman, J. CT-target determination in postero-ventral pallidotomy: a universal method. Technical note. Acta Neurochir 1996; 138: 732735.Google Scholar
26. Sumanaweera, TS, Adler, JR, Napel, S, et al. Characterization of spatial distortion in magnetic resonance imaging and its implications for stereotactic surgery. Neurosurgery 1994; 35: 696702.Google Scholar
27. Harris, R, Wesbey, G. Artifacts in magnetic resonance imaging. In: Kressel, HY (Ed). Magnetic Resonance Annual 1988. New York: Raven Press, 1988; 71112.Google Scholar
28. Alexander, E, Kooy, HM, van Herk, M, et al. Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 1995; 83: 271276.Google Scholar
29. Lunsford, LD. Magnetic resonance imaging stereotactic thalamotomy: report of a case with comparison to computed tomography. Neurosurgery 1988; 23: 363367.Google Scholar