Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:03:56.179Z Has data issue: false hasContentIssue false

Predicting Who Will Develop Dementia in a Cohort of Canadian Seniors

Published online by Cambridge University Press:  04 August 2016

David B. Hogan*
Affiliation:
Departments of Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
Erika M. Ebly
Affiliation:
Departments of Medicine and Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
*
Health Sciences Centre, University of Calgary, 3330 Hospital Dr., NW, Calgary Alberta T2N 4N1
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

We examined whether easily attainable variables were useful in predicting who became demented over a five year period and determined the rates of incident dementia for different categories of mild cognitive impairment.

Methods:

This was a cohort study of subjects recruited nationally in a population-based survey of Canadians 65 years and older (the Canadian Study of Health and Aging). After standardized clinical assessments, a subset of subjects (n=1782) was categorized as not demented at time one. Identical study methods allowed a reassessment of the cognitive status of surviving subjects (n=892) five years later.

Results:

Three baseline variables (Modified Mini Mental State (3MS) score, subject's age, and an informant's report of the presence of memory problems) were statistically significant predictors of the development of a dementia. An equation incorporating these three variables had a sensitivity of 79% and a specificity of 56% for predicting dementia among survivors at time two. An equation substituting the MMSE for the 3MS showed similar results. The various categories of mild cognitive impairment examined showed significantly different likelihoods for the subsequent development of a dementia. Some categories with a higher dementia risk were characterized by inclusion criteria requiring neuropsychological test scores that were greater than one standard deviation (SD) below the mean of age based normative data.

Conclusion:

In the absence of extensive laboratory, radiologic or neuropsychological tests, simple variables that can be easily determined in the course of a single clinical encounter were useful in predicting subjects with a higher risk of developing dementia. Attempts to use neuropsychological results to predict the development of dementia should look for significant impairments on age-standardized tests.

Résumé:

RÉSUMÉ:Objectifs:

Nous avons évalué si des variables facilement accessibles peuvent être utiles pour prédire qui deviendra dément dans les cinq prochaines années et nous avons déterminé l'incidence de la démence pour différentes catégories de déficits cognitifs légers.

Méthodes:

Il s'agit d'une étude de cohorte portant sur des sujets âgés de 65 ans et plus, recrutés à travers le Canada dans le cadre d'une étude de population (l'étude Canadienne sur la santé et le vieillissement). Suite à une évaluation clinique standardisée, un sous-groupe de sujets (n=1782) ont été classifiés comme déments au temps 1. Des méthodes d'étude identiques ont permis une réévaluation du statut cognitif des sujets survivants (n=892) cinq ans plus tard.

Résultats:

Trois variables de l'évaluation initiale (le score du mini mental modifié, l'âge du sujet et les troubles de mémoire rapportés par un informateur) étaient des prédicteurs significatifs du développement d'une démence. Une équation incorporant ces trois variables avait une sensibilité de 79% et une spécificité de 56% pour prédire la démence parmi les survivants au temps 2. Les différentes catégories de déficits cognitifs légers examinés ont montré des probabilités significativement différentes pour le développement subséquent d'une démence. Certains sous-groupes comportaient un risque plus élevé de démence notamment ceux dont les scores des tests neuropsychologiques étaient de plus d'une déviation standard sous la moyenne normative pour l'âge.

Conclusion:

En l'absence d'épreuves biologiques, radiologiques ou neuropsychologiques poussées, des variables simples qui peuvent être déterminées au cours d'une seule entrevue clinique ont été utiles pour prédire quels sujets avaient un risque plus élevé de développer une démence. Si des tests neuropsychologiques sont utilisés pour prédire le développement d'une démence on devrait rechercher des déficits significatifs au moyen d'épreuves standardisées pour l'âge.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

REFERENCES

1. Flicker, C, Ferris, SH, Reisberg, B. A two-year longitudinal study of cognitive function in normal aging and Alzheimer’s disease. J Geriatr Psychiatry Neurol 1993;6:8496.Google Scholar
2. Devanand, DP, Folz, M, Gorlyn, M, Moeller, JR, Stern, Y. Questionable dementia: clinical course and predictors of outcome. J Am Geriatr Soc 1997;45(3):321328.Google Scholar
3. Petersen, RC, Smith, GE, Tangalos, EG, Kokmen, E, Ivnik, RJ. Longitudinal outcome of patients with a mild cognitive impairment. Ann Neurol 1993;34:294295.Google Scholar
4. O’Neill, D, Surmon, DJ, Wilcock, GK. Longitudinal diagnosis of memory disorders. Age and Ageing 1992;21:393397.Google Scholar
5. Koven, MG. Health of the elderly and use of health services. Pub Health Reports 1977;92:915.Google Scholar
6. Tierney, MC, Szalai, JP, Snow, WG, et al. A prospective study of the clinical utility of ApoE genotype in the prediction of outcome in patients with memory impairment. Neurology 1996;46:149154.CrossRefGoogle ScholarPubMed
7. Jack, CR, Petersen, RC, Xu, YC, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999;52:13971403.Google Scholar
8. Tierney, MC, Szalai, JP, Snow, WG, et al. Prediction of probable Alzheimer’s disease in memory-impaired patients: a prospective longitudinal study. Neurology 1996;46:661665.CrossRefGoogle ScholarPubMed
9. Petersen, RC, Smith, GS, Ivnik, RJ, et al. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA 1995;273:12741278.Google Scholar
10. Zaudig, M. Anew systematic method of measurement and diagnosis of “Mild Cognitive Impairment” and dementia according to ICD-10 and DSM-III-R Criteria. Int Psychogeriatr 1992;4 Suppl 2:203219.Google Scholar
11. Crook, T, Bartus, RT, Ferris, SH, et al. Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change – report of a National Institute of Mental Health Work Group. Dev Neuropsychol 1986;2:261276.Google Scholar
12. Blackford, RC, La Rue, A. Criteria for diagnosing age-associated memory impairment: proposed improvement from the field. Dev Neuropsychol 1989;5:295306.CrossRefGoogle Scholar
13. Canadian Study of Health and Aging. Canadian study of health and aging-study methods and prevalence of dementia. Can Med Assoc J 1994;150:899913.Google Scholar
14. McDowell, I, Newell, C. Measuring Health: a Guide to Rating Scales and Questionnaires. New York: Oxford University Press, 1987: 47.Google Scholar
15. Fillenbaum, GG. Multidimensional functional assessment of older adults: the Duke Older Americans Resources and Services Procedure. New Jersey: Lawrence Erlbaum Associate, 1988: 125.Google Scholar
16. Ebly, EM, Hogan, DH, Fung, TS. Correlates of self-rated in persons aged 85 and over: results from the Canadian Study of Health and Aging. Can J Public Health 1996;87:2831.Google Scholar
17. Teng, EL, Chui, HC. The Modified Mini-Mental State (3MS)examination. J Clin Psychiatr 1987;48:314318.Google Scholar
18. Folstein, MF, Folstein, SE, McHugh, PR. Mini-Mental State – a practical method for grading the cognitive state of patients for the clinician. J Psychiatric Res 1975;12:189198.Google Scholar
19. McDowell, I, Kristjansson, B, Hill, GB, Hebert, R. Community screening for dementia - the Mini Mental State Exam (MMSE) and Modified Mini Mental State (3MS) compared. J Clin Epidemiol 1997;(50):377383.CrossRefGoogle ScholarPubMed
20. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder (3rd Ed. rev.) Washington DC. Washington DC 1987.Google Scholar
21. McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group. Neurology 1984;34:939944.Google Scholar
22. Ebly, EM, Hogan, DH, Parhad, IM. Cognitive impairment in the nondemented elderly: results from the Canadian Study of Health and Aging. Arch Neurol 1995;52:612619.CrossRefGoogle ScholarPubMed
23. Schaie, KW, Parham, IA. Cohort-sequential analyses of adult intellectual development. Dev Psychol 1977;13:649653.CrossRefGoogle Scholar
24. Murphy, JM, Berwick, DM, Weinstein, MC, et al. Performance of screening and diagnostic tests: application of receiver operating characteristic analysis. Arch Gen Psychiatry 1987;44:550555.Google Scholar
25. Gao, S, Hendrie, HC, Hall, KS, Hui, S. The relationship between age, sex, and the incidence of dementia and Alzheimer’s disease. Arch Gen Psychiatry 1998;55(9):809815.Google Scholar
26. Jorm, AF, Jolley, D. The incidence of dementia: a meta-analysis. Neurology 1998;51(3):728733.Google Scholar
27. Dartigues, JF, Commenges, D, Letenneur, D, et al. Cognitive predictors of dementia in elderly community residents. Neuroepidemiology 1997;16(1):2939.Google Scholar
28. McGlone, J, Gupta, S, Humphrey, D, et al. Screening for early dementia using memory complaints from patients and relatives. Arch Neurol 1990;47:11891193.Google Scholar
29. Tierney, MC, Szalai, JP, Snow, WG, Fisher, RH. The prediction of Alzheimer’s disease. The role of patient and informant perceptions of cognitive deficits. Arch Neurol 1996;53(5):423427.Google Scholar
30. Small, BJ, Vitanen, M, Backman, L. Mini-Mental State Examinationitem scores as predictors of Alzheimer’s disease: incidence data from the Kungsholmen Project, Stockholm. J Gerontol 1997; 52(5): M299–304.Google ScholarPubMed
31. Albert, MS, Jones, K, Savage, CR, et al. Predictors of cognitive change in older persons: MacArthur studies of successful aging. Pyschol Aging 1995;10(4):578589.CrossRefGoogle ScholarPubMed
32. Rubin, EH, Storandt, M, Miller, JP, et al. A prospective study of cognitive function and onset of dementia in cognitively healthy elders. Arch Neurol 1998;55(3):395401.CrossRefGoogle ScholarPubMed
33. Kaye, JA, Swihart, T, Howieson, D, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997;48(5):12971304.CrossRefGoogle ScholarPubMed
34. Stewart, R, Liolitsa, D. Type 2 diabetes mellitus, cognitive impairment and dementia. Diabet Med 1999;16(2):93112.Google Scholar
35. Yaffe, K, Blackwell, T, Gore, R, et al. Depressive symptoms and cognitive decline in nondemented elderly women: a prospective study. Arch Gen Psychiatry 1999;56(5):425430.CrossRefGoogle ScholarPubMed
36. Tilvis, RS, Strandberg, TE, Juva, K. Apolipoprotein E phenotypes, dementia and mortality in a prospective population sample. J Am Geriatr Soc 1998;46(6):712715.Google Scholar
37. Statistics Canada. Health Statistics Division: Deaths 1992. Ottawa: Statistics Canada, 1995, 17.Google Scholar
38. Norton, MC, Breitner, JC, Welsh, KA, Wyse, BW. Characteristics of nonresponders in a community survey of the elderly. J Am Geriatr Soc 1994;42(12):12521256.Google Scholar