Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:20:39.300Z Has data issue: false hasContentIssue false

Positron Emission Tomography in Movement Disorders

Published online by Cambridge University Press:  18 September 2015

W. R. Wayne Martin*
Affiliation:
Division of Neurology, Health Sciences Centre Hospital, University of British Columbia, Vancouver
*
Division of Neurology, Health Sciences Centre Hospital, University of British Columbia, 2211 Wesbrook Mall, Vancouver, B.C., Canada V6T 1W5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Positron emission tomography provides a method for the quantitation of regional function within the living human brain. Studies of cerebral metabolism and blood flow in patients with Huntington’s disease, Parkinson’s disease and focal dystonia have revealed functional abnormalities within substructures of the basal ganglia. Recent developments permit assessment of both pre-synaptic and post-synaptic function in dopaminergic pathways. These techniques are now being applied to studies of movement disorders in human subjects.

Type
Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1985

References

Bruyn, GW (1973) Neuropathological changes in Huntington’s chorea. In: Huntington’s Chorea, Barbeau, A, Chase, TN, Paulson, GW (eds.) Raven Press, New York pp. 399403.Google ScholarPubMed
Burton, K, Farrell, K, Li, D, Calne, DB (1984) Lesions of the putamen and dystonia: C T and magnetic resonance imaging. Neurology 34:962965.CrossRefGoogle Scholar
Eckelman, WC, Reba, RC, Rzeszotarski, WJ, Gibson, RE, Hill, T, Holman, BL, Budinger, T, Conklin, JJ.Eng, R, Grissom, MP (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223: 291292.CrossRefGoogle ScholarPubMed
Ferron, A, Des Rosiers, MH, de Montigny, C, Bosler, O, Reader, TA, Descarries, L (1979) Effects of unilateral destruction of the nigrostriatal dopamine system on local cerebral glucose utilization in adult rat. Soc. Neuro. Sci. Abstr. 5: 70.Google Scholar
Frackowiak, RSJ, Lenzi, G-L, Jones, T, Heather, JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J. Comput. Assist. Tomogr. 4: 727736.CrossRefGoogle ScholarPubMed
Frost, JJ, Dannals, RF.Ravert, HT, Wilson, AA, Wong, DF.Links, JM, Burns, HD, Kuhar, MJ, Snyder, SH, Wagner, HN Jr (1984) Imaging opiate receptors with positron emission tomography. J. Nucl. Med. 25: P73.Google Scholar
Garnett, ES, Firnau, G, Nahmias, C (1983a) Dopamine visualized in the basal ganglia of living man. Nature 305: 137138.CrossRefGoogle ScholarPubMed
Garnett, S, Firnau, G, Nahmias, C, Chirakal, R (1983b) Striatal dopamine metabolism in living monkeys examined by positron emission tomography. Brain Res. 280: 169171.CrossRefGoogle ScholarPubMed
Garnett, ES, Firnau, G, Nahmias, C, Sood, S, Belbeck, L (1980) Blood-brain barrier transport and cerebral utilization of dopa in living monkeys. Am. J. Physiol. 238: 318327.Google ScholarPubMed
Garnett, ES, Nahmias, C, Firnau, G (1984) Central dopaminergic pathways in hemiparkinsonism examined by positron emission tomography. Can. J. Neurol. Sci. 11: 174179.CrossRefGoogle ScholarPubMed
Greitz, T, Bergstrom, M, Boethius, Kingsley, D, Ribbe, T (1980) Head fixation system for integration of radiodiagnostic and therapeutic procedures. Neuroradiology 19: 16.CrossRefGoogle ScholarPubMed
Homykie wicz, O (1972) Neurochemistry of parkinsonism. In: Handbook of Neurochemistry 7, Lajtha, A., (ed.) Plenum Press, New York pp. 465501.Google Scholar
Huang, S-C, Phelps, ME, Hoffman, EJ, Sideris, K, Selin, CJ, Kuhl, DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am. J. Physiol. 238: E69-E82.Google ScholarPubMed
Jones, T, Chesler, DA, Ter-Pogossian, MM (1976) The continuous inhalation of oxygen-15 for assessing regional oxygen extraction in the brain of man. Br. J. Radiol. 49: 339343.CrossRefGoogle ScholarPubMed
Kozlowski, MR, Marshall, JF (1980) Plasticity of [l4C]2-deoxy-d-glucose incorporation into neostriatum and related structures in response to dopamine neuron damage and apomorphine replacement. Brain Res. 197: 167183.CrossRefGoogle ScholarPubMed
Kuhl, DE, Metter, EJ, Reige, WH (1984) Patterns of local cerebral glucose utilization determined in Parkinson’s disease by the [,8F]Fluorodeoxyglucose method. Ann. Neurol. 15: 419424.CrossRefGoogle ScholarPubMed
Kuhl, DE, Phelps, ME, Markham, CH, Metter, EJ, Riege, WH, Winter, J (1982) Cerebral metabolism and atrophy in Huntington’s disease determined by 18FDG and computed tomographic scan. Ann. Neurol. 12: 425434.CrossRefGoogle ScholarPubMed
Leenders, K, Wolfson, L, Gibbs, J, Wise, R, Jones, T.Legg, N (1983) Regional cerebral blood flow and oxygen metabolism in Parkinson’s disease and their response to L-dopa. J. Cereb. Blood Flow Metabol. 3 (Suppl.l) :488489.Google Scholar
Martin, WRW, Beckman, JH, Calne, DB, Adam, MJ, Harrop, R, Rogers, JG, Ruth, TJ, Sayre, Cl, Pate, BD (1984a) Cerebral glucose metabolism in Parkinson’s disease. Can. J. Neurol. Sci. 11: 169173.CrossRefGoogle ScholarPubMed
Martin, WRW, Hayden, M, Calne, DB, Beckman, J, Bergstrom, M, Harrop, R, Sayre, C, Pate, BD, Adams, M, Ruth, T, Rogers, J (1984b) Positron emission tomography in the study of disorders of the basal ganglia. Can. J. Neurol. Sci. 11: 326.Google Scholar
Martin, WRW, Hayden, MR, Suchowersky, O, Beckman, J, Adam, M, Ammann, W, Bergstrom, M, Harrop, R, Rogers, J, Ruth, T, Sayre, C, Pate, BD (1984c) Striatal metabolism in Huntington’s disease and in benign hereditary chorea. Ann. Neurol. 16: 126.Google Scholar
Mata, M, Fink, DJ, Gainer, H, Smith, CB, Davidsen, L, Savaki, H, Schwartz, WJ, Sokoloff, L (1980) Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem. 34: 213215.CrossRefGoogle ScholarPubMed
Mazziotta, JC, Phelps, ME, Meadors, AK, Ricci, A, Winter, J, Bentson, JR (1982) Anatomical localization schemes for use in positron computed tomography using a specially designed headholder. J. Comput. Assist. Tomogr. 6 (4): 848853.CrossRefGoogle ScholarPubMed
Mintun, MA, Raichle, ME (1984) Kinetic measurements are necessary for description of brain receptors with PET. J. Nucl. Med. 25: P72.Google Scholar
Mintun, MA, Raichle, ME, Kilbourne, MR, Wooten, GF, Welch, MJ (1984) A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann. Neurol. 15: 217227.CrossRefGoogle ScholarPubMed
Mintun, MA, Raichle, ME, Martin, WRW, Herscovitch, P (1984) Brain oxygen utilization Measured with 0–15 radiotracers and positron emission tomography. J. Nucl. Med. 25: 177187.Google Scholar
Narbona, J, Obeso, JA, Tunon, T, Martinez-Lage, JM, Marsden, CD (1984) Hemi-dystonia secondary to localised basal ganglia tumour. J. Neurol. Neurosurg. Psych. 47: 704709.CrossRefGoogle ScholarPubMed
Perlmutter, JS, Raichle, ME (1984) Pure hemidystonia with basal ganglion abnormalities on positron emission tomography. Ann. Neurol. 15: 228233.CrossRefGoogle ScholarPubMed
Phelps, ME, Huang, SC, Hoffman, EJ, Selin, C, Sokoloff, L, Kuhl, DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18) 2-fluoro-2-deoxy-D-glucose: validation of method. Ann. Neurol. 6: 371388.CrossRefGoogle Scholar
Raichle, ME, Martin, WRW, Herscovitch, P, Mintun, MA, Markham, J (1983) Brain blood flow measures with intravenous H215O. II. Implementation and validation. J. Nucl. Med. 24: 790798.Google ScholarPubMed
Raichle, ME, Perlmutter, JS, Fox, PT (1984) Parkinson’s disease: metabolic and pharmacological approaches with positron emission tomography. Ann. Neurol. (Suppl.) 15: 131132.CrossRefGoogle ScholarPubMed
Reivich, M, Kuhl, D, Wolf, A, Greenberg, J, Phelps, M, Ido, T, Casella, V, Fowler, J, Hoffman, E, Alavi, A, Som, P, Sokoloff, L (1979) The [,8F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44: 127137.CrossRefGoogle ScholarPubMed
Rougemont, D, Baron, JC, Collard, P, Bustany, P, Comar, D, Agid, Y (1983) Local cerebral metabolic rate of glucose (ICMRGlc) in treated and untreated patients with Parkinson’s disease. J. Cereb. Blood Flow Metabol. 3 (Suppl. 1) : 504505.Google Scholar
Sagar, SM, Snodgrass, SR (1980) Effects of Substantia Nigra Lesions on Forebrain 2-deoxy-glucose Retention in the Rat. Brain Res. 185: 335348.CrossRefGoogle Scholar
Schwartz, WJ, Sharp, FR, Gunn, RH, Evarts, EV (1976) Lesions of ascending dopaminergic pathways decrease forebrain glucose utilization. Nature 261: 155157.CrossRefGoogle Scholar
Snyder, SH (1984) Drug and neurotransmitter receptors in the brain. Science 224: 2231.CrossRefGoogle ScholarPubMed
Sokoloff, L (1981) Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J. Cereb. Blood Flow Metabol. 1: 736.CrossRefGoogle ScholarPubMed
Sokoloff, L, Reivich, M, Kennedy, C, Des Rosiers, MH, Patlak, CS, Pettigrew, KD, Sakurada, O, Shinohara, M (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28: 897916.CrossRefGoogle ScholarPubMed
Subramanyam, R, Alpert, NM, Hoop, B Jr, Brownell, GL, Taveras, JM (1978) A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O, and C15O2. J. Nucl. Med. 19: 4853.Google Scholar
Suchowersky, O, Hayden, M, Martin, WRW, Li, DK, Bergstrom, M, Harrop, R, Rogers, J, Sayre, C, Pate, BD (1984) Benign hereditary chorea: clinical, radiological and PET findings. Can. J. Neurol. Sci. 11:329.Google Scholar
Ter-Pogossian, MM, Ficke, DC, Hood, JT Sr, Yamamoto, M, Mullani, NA (1982) PETT VI: A positron emission tomograph utilizing cesium fluoride scintillation detectors. J. Comput. Assist. Tomogr. 6 (1) : 125133.CrossRefGoogle Scholar
Wagner, HN Jr, Burns, HD, Dannals, RF, Wong, DF, Langstrom, B, Duelfer, T, Frost, JJ, Ravert, HT, Links, JM, Rosenbloom, SB, Lukas, SE, Kramer, AV, Kuhar, MJ (1983) Imaging dopamine receptors in the human brain by positron tomography. Science 221: 12641266.CrossRefGoogle ScholarPubMed
Wolfson, L, Leenders, KL, Jones, T (1984) Parkinson’s disease and Sinemet treatment alter regional cerebral blood flow and oxygen metabolism. Neurology 34 (Suppl. 1) : 115.Google Scholar
Wong, DF, Wagner, HN Jr, Dannals, RF, Frost, JJ, Ravert, HV, Links, JM, Folstein, MF, Jensen, BA, Kuhar, MJ, Toung, JT (1984) The effects of age on dopamine receptors measured by positron tomography in the living human brain. J. Nucl. Med. 25: P73.Google Scholar
Wooten, GF, Collins, RC (1981) Metabolic effects of unilateral lesions of the substantia nigra. J. Neurosci. 1: 285291.CrossRefGoogle ScholarPubMed